
HTTP
Essentials

Stephen Thomas

Protocols
for Secure,
Scaleable
Web Sites

WILEY

HTTP Essentials

Protocols for Secure, Scaleable
Web Sites

Stephen A. Thomas

Wiley Computer Publishing
John Wiley & Sons, Inc.
New York •••• Chichester •••• Weinheim •••• Brisbane •••• Singapore •••• Toronto

Publisher: Robert Ipsen
Editor: Margaret Eldridge
Managing Editor: Micheline Frederick
Text Design & Composition: Stephen Thomas

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the
product names appear in initial capital or all capital letters. Readers, however,
should contact the appropriate companies for more complete information regarding
trademarks and registration.

This book is printed on acid-free paper.

Copyright © 2001 by Stephen A. Thomas. All rights reserved.

Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or trans-
mitted in any form or by any means, electronic, mechanical, photocopying, re-
cording, scanning or otherwise, except as permitted under Section 107 or 108 of the
1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, ma 01923, (978) 750-
8400, fax (978) 750-4744. Requests to the Publisher for permission should be ad-
dressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue,
New York, ny 10158-0012, (212) 850-6011, fax (212) 850-6008, email perm-
req@wiley.com.

This publication is designed to provide accurate and authoritative information in
regard to the subject matter covered. It is sold with the understanding that the pub-
lisher is not engaged in professional services. If professional advice or other expert
assistance is required, the services of a competent professional person should be
sought.

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

For the West Avenue Gang

vii

CONTENTS

Chapter 1: Introduction...1

1.1 HTTP and the World Wide Web ...2
1.2 Protocol Layers...3
1.3 Uniform Resource Identifiers...9
1.4 Organization of This Book ..10

Chapter 2: HTTP Operation .. 13

2.1 Clients and Servers...13
2.1.1 Initiating Communication...14
2.1.2 Connections...15
2.1.3 Persistence ...15
2.1.4 Pipelining ..17

2.2 User Operations ...19
2.2.1 Web Page Retrieval – GET...19
2.2.2 Web Forms – POST..20
2.2.3 File Upload – PUT..22
2.2.4 File Deletion – DELETE...23

2.3 Behind the Scenes ..24
2.3.1 Capabilities – OPTIONS ...24
2.3.2 Status – HEAD...25
2.3.3 Path – TRACE..25

2.4 Cooperating Servers ...26
2.4.1 Virtual Hosts ...27

viii HTTP Essentials

2.4.2 Redirection ..29
2.4.3 Proxies, Gateways, and Tunnels...30
2.4.4 Cache Servers ..33
2.4.5 Counting and Limiting Page Views..35

2.5 Cookies and State Maintenance ..37
2.5.1 Cookies..38
2.5.2 Cookie Attributes..41
2.5.3 Accepting Cookies ..42
2.5.4 Returning Cookies ..44

Chapter 3: HTTP Messages ... 47

3.1 The Structure of HTTP Messages ..48
3.1.1 HTTP Requests ..48
3.1.2 HTTP Responses..51

3.2 Header Fields ...53
3.2.1 Accept..57
3.2.2 Accept-Charset..58
3.2.3 Accept-Encoding ..59
3.2.4 Accept-Language ..59
3.2.5 Accept-Ranges ..60
3.2.6 Age ..61
3.2.7 Allow ...65
3.2.8 Authentication-Info ..65
3.2.9 Authorization ..65
3.2.10 Cache-Control ..65
3.2.11 Connection ..70
3.2.12 Content-Encoding ..73
3.2.13 Content-Language ..74
3.2.14 Content-Length ..74
3.2.15 Content-Location ...75
3.2.16 Content-MD5...76
3.2.17 Content-Range..77
3.2.18 Content-Type ..78
3.2.19 Cookie ...79
3.2.20 Cookie2 ...80
3.2.21 Date ...80

Contents ix

3.2.22 ETag ..81
3.2.23 Expect..83
3.2.24 Expires ...84
3.2.25 From ..84
3.2.26 Host ...85
3.2.27 If-Match ..86
3.2.28 If-Modified-Since ...88
3.2.29 If-None-Match ...90
3.2.30 If-Range ..91
3.2.31 If-Unmodified-Since...92
3.2.32 Last-Modified ...93
3.2.33 Location ..93
3.2.34 Max-Forwards ...94
3.2.35 Meter ...99
3.2.36 Pragma...102
3.2.37 Proxy-Authenticate ...102
3.2.38 Proxy-Authorization..103
3.2.39 Range...103
3.2.40 Referer ...103
3.2.41 Retry-After..105
3.2.42 Server...105
3.2.43 Set-Cookie2 ..106
3.2.44 TE..106
3.2.45 Trailer ..107
3.2.46 Transfer-Encoding ..108
3.2.47 Upgrade ...110
3.2.48 User-Agent ..110
3.2.49 Vary..111
3.2.50 Via ...112
3.2.51 Warning...113
3.2.52 WWW-Authenticate ..114

3.3 Status Codes...115
3.3.1 Informational (1xx)..117
3.3.2 Successful (2xx) ...119
3.3.3 Redirection (3xx) ...122
3.3.4 Client Error (4xx) ..124
3.3.5 Server Error (5xx)..127

x HTTP Essentials

Chapter 4: Securing HTTP...129

4.1 Web Authentication...130
4.1.1 Basic Authentication ...130
4.1.2 Original Digest Authentication ..133
4.1.3 Improved Digest Authentication ..142
4.1.4 Protecting Against Replay Attacks..144
4.1.5 Mutual Authentication..145
4.1.6 Protection for Frequent Clients...149
4.1.7 Integrity Protection ...152

4.2 Secure Sockets Layer..156
4.2.1 SSL and Other Protocols ..157
4.2.2 Public Key Cryptography ..159
4.2.3 SSL Operation ..161

4.3 Transport Layer Security..168
4.3.1 Differences from SSL..168
4.3.2 Control of the Protocol ...169
4.3.3 Upgrading to TLS within an HTTP Session169

4.4 Secure HTTP...172

Chapter 5: Accelerating HTTP...177

5.1 Load Balancing ..177
5.1.1 Locating Servers..178
5.1.2 Distributing Requests..180
5.1.3 Determining a Target Server...182

5.2 Advanced Caching ...186
5.2.1 Caching Implementations ...186
5.2.2 Proxy Auto Configuration Scripts...194
5.2.3 Web Proxy Auto-Discovery...197
5.2.4 Web Cache Communication Protocol ..200
5.2.5 Network Element Control Protocol..204
5.2.6 Internet Cache Protocol ..212
5.2.7 Hyper Text Caching Protocol ...216
5.2.8 Cache Array Routing Protocol ..222

5.3 Other Acceleration Techniques..225

Contents xi

5.3.1 Specialized SSL Processing ...225
5.3.2 TCP Multiplexing ...227

Appendix A: HTTP Versions.. 229

A.1 HTTP’s Evolution ..229
A.2 HTTP Version Differences...231
A.3 HTTP 1.1 Support ...234

Appendix B: Building Bullet-Proof Web Sites ... 241

B.1 The Internet Connection...242
B.1.1 Redundant Links ..242
B.1.2 Multi-homing ...246
B.1.3 Securing the Perimeter ...249

B.2 Systems and Infrastructure ..250
B.2.1 Reliability through Mirrored Web Sites ...250
B.2.2 Local Load Balancing and Clustering ..251
B.2.3 Multi-Layer Security Architectures..254

B.3 Applications...255
B.3.1 Web Application Dynamics..256
B.3.2 Application Servers...257
B.3.3 Database Management Systems ...260
B.3.4 Application Security ...265
B.3.5 Platform Security ..265

B.4 Staying Vigilant ...266
B.4.1 External Site Monitoring..266
B.4.2 Internal Network Management ..268
B.4.3 Intrusion Detection...270
B.4.4 Maintenance and Upgrade Procedures ...273

B.5 The Big Picture..274
B.5.1 Internet Connection ...276
B.5.2 Web Systems...276
B.5.3 Applications ..276
B.5.4 Database Management System...277
B.5.5 Network Management and Monitoring ...277

xii HTTP Essentials

B.5.6 Intrusion Detection System..277

References ...279

General References ..279
HTTP Specifications ...280
Separate Security Protocols..280
Caching Protocols ..281
Previous HTTP Versions ...281

Glossary ...283

Index ..307

1

CHAPTER 1

Introduction —
HTTP, the Internet, and the Web

Today’s Wall Street Journal includes 197 ads, and 159 of
them—over 80 percent—feature a World Wide Web address.
Even more remarkably, only 121 (61 percent) list a telephone
number. If advertisements are a reflection of society, then
here in the United States, at least, the Web has become an
indispensable part of our lives.

This book is about what makes the Web tick. It explains the
protocol that defines how Web browsers communicate with
Web servers, the mechanisms that keep that communication
secure from counterfeits and eavesdroppers, and the tech-
nologies that accelerate our Web experience. In this first
chapter we’ll get a quick introduction to a few important
concepts, including the relationship between the Hypertext
Transfer Protocol (http) and the Web, the notion of proto-
col layers, and the Web’s idea of an address. The final section
outlines the rest of the text.

By the end of the book we’ll have covered all aspects of the
Hypertext Transfer Protocol: its operation, message formats,

2 HTTP Essentials

security mechanisms, and acceleration techniques. We will
also see how http has evolved, and how newer implementa-
tions maintain backward compatibility with old systems.
And finally, we will take what we’ve learned and apply it to
building scalable, highly available, and secure Web site
architectures.

1.1 HTTP and the World Wide Web

The Internet can trace its roots to research projects begun in
the 1960s by the United States Department of Defense. A
British physicist working in Switzerland, however, has ar-
guably influenced today’s Internet more than any other per-
son. It was in March 1989 that Tim Berners-Lee first
outlined the advantages of a hypertext-based, linked infor-
mation system. And by the end of 1990, Berners-Lee, along
with Robert Cailliau, created the first Web browsers and
servers. Those browsers needed a protocol to regulate their
communications; for that Berners-Lee and Cailliau designed
the first version of http.

Since then, Web traffic has grown to dominate the Internet.
By 1998, http accounted for over 75 percent of the traffic on
Internet backbones1 dwarfing other protocols such as email,
file transfer, and remote login. Today, at least in the common
vernacular, the World Wide Web is the Internet. And the
Web continues to grow. In the fall of 2000, as this book is
nearing completion, the Censorware Project reports that the
Web has roughly:

• 2 700 000 000 pages

• 50 700 000 000 000 bytes of text

• 608 000 000 images

• 10 100 000 000 000 bytes of image data

1 K. Claffy, Greg Miller, and Kevin Thompson. “The Nature of the Beast:
Recent Traffic Measurements from an Internet Backbone.” Presented at
the inet ’98 Conference, April 1998.

Introduction 3

During the 24 hours previous, the Web added:

• 5 490 000 new pages

• 103 000 000 000 new bytes of text

• 1 240 000 new images

• 20 600 000 000 new bytes of image data

The Hypertext Transfer Protocol has grown along with the
Web. The original specification for http fits comfortably on
a single page and, at 656 words long, can be read and under-
stood in just a few minutes. In contrast, the specification for
http version 1.1 spans several documents. The core docu-
ment alone packs nearly 60 000 words on 176 pages.

The 176 pages of the core http specification, along with
other documents that make up the http standard, define the
rules by which Web browsers, Web servers, proxies, and
other Web systems establish and maintain communications
with each other. The http standards do not dictate what
information the systems exchange once they establish com-
munication. Indeed, one of http’s greatest strengths is its
ability to accommodate almost any kind of information ex-
change. Web pages, for example, are often created according
to the rules for the Hypertext Markup Language, or html
(also invented by Berners-Lee). But http is equally adept at
transferring remote printing instructions, program files, and
multimedia objects. With the ubiquity of Web browsers, the
pervasiveness of the Internet, and the power and flexibility of
http, the protocol Berners-Lee and Cailliau developed may
ultimately become the foundation for all network-based
computing.

1.2 Protocol Layers

To understand http, it helps to know a little about the ar-
chitecture of the Internet. We can look at the Internet’s ar-
chitecture from two perspectives. From one view, the
Internet is a loosely connected collection of networks of all

4 HTTP Essentials

sizes and types that cooperate to exchange information. In-
stead of considering physical systems, however, we’ll focus on
the software that controls those systems. From that perspec-
tive, the Internet is a collection of different communication
protocols; these protocols cooperate to provide services.

Providing services over the Internet is actually a very com-
plex undertaking. To make the challenge more manageable,
the Internet designers divided the work into different com-
ponents and assigned those components to several different
communications protocols. The designers further organized
those protocols into layers.

Figure 1.1 shows the four protocol layers within a computer
system. The lowest layer protocol controls the specific net-
work technology, whether it’s an Ethernet lan, a dial-up
modem, a fiber optic link, or any other technology. One of
the Internet’s greatest strengths is its ability to adapt to all
types of network technology. Isolating the protocol for that
technology within its own layer is one of the reasons for this
flexibility; supporting a new network technology is simply a
matter of implementing an appropriate low layer protocol.

Transport Protocol (TCP)

Internet Protocol (IP)

Network Technology

Application

Communication System

Figure 1.1 �
Systems that communicate over

the Internet use several protocols.
Each protocol operates at its own
layer in a protocol stack, fulfilling

specific responsibilities. This figure
shows the four protocol layers

used in an HTTP exchange. HTTP
itself is the application.

Introduction 5

The protocol layer immediately above the network technol-
ogy is the Internet Protocol, or ip. And even though ip may
not be as famous as other protocols on the Internet, it can
easily justify its name as the Internet Protocol. Not every sys-
tem on the Internet uses the same network technology, and
different systems rely on different transport and application
protocols. Every system on the Internet, however, uses ip.
The Internet Protocol’s main responsibility is taking individ-
ual packets of information and forwarding them to their des-
tination. Most communications between systems require the
exchange of many packets, and ip takes responsibility for
every one.

The next protocol is the transport protocol. The Internet in
general uses three different transport protocols, but Web
communications in particular uses one: the Transmission
Control Protocol (tcp). While ip has responsibility for mov-
ing packets from one system to another, tcp makes that in-
formation transfer reliable. It ensures that the packets arrive
in the right order, that none get lost in transit, and that no
errors appear.

The final protocol layer is the application. This protocol ac-
tually does something meaningful with the information
that’s exchanged, including organizing the exchange into
conversations. The application protocol that most interests us
here is, of course, http, but there are many other application
protocols on the Internet. There are application protocols for
exchanging electronic mail, for setting up telephone calls, for
authorizing dialup sessions, and so on. Of course, as we
noted earlier, http traffic is the bulk of traffic on today’s
Internet.

The internal protocol organization of a single system isn’t
what’s important for communications. After all, it takes
more than one system to have meaningful communications.
Figure 1.2 expands the earlier figure by bringing a second
system into the diagram. Now we can start to see the way
communication actually takes place. The figure shows black

The 7 Layer Stack?

Many theoretical descriptions of

network communications rely on

the Open Systems

Interconnection Reference Model.

That model, developed by the

International Standards

Organization as a framework for

protocol standards, defines seven

protocol layers. The Internet’s

developers, however, have never

been a slave to abstract theory;

instead, they’ve focused on

making practical networks

operate. In most cases, the four

protocol layers of figure 1.1 are

sufficient and appropriate.

6 HTTP Essentials

arrows between the different protocol layers within a system.
Those arrows represent direct interaction. The application
protocol in one system interacts directly with the transport
protocol. That protocol, in turn, interacts directly with ip,
and ip interacts with the protocol controlling the network
technology. The different systems can directly interact with
each other only through the network technology.

Figure 1.2 shows another form of interaction as well, how-
ever. The gray arrows represent a logical interaction, and, as
the figure indicates, each protocol layer logically interacts
with its peer in the distant system. So even though the appli-
cation in one system directly interacts only with tcp, the re-
sult of that interaction is a logical communication with the
application in another system. In the case of http, the http
implementation in one system (for example, a Web browser)
is effectively communicating with the http implementation
in another (a Web server, perhaps).

To see this process in more detail, let’s look at how an http
message makes its way from your Web browser to a Web
server on the Internet. Figure 1.3 shows the first four steps in

Transport Protocol (TCP)

Internet Protocol (IP)

Network Technology

Application

Communication System

Transport Protocol (TCP)

Internet Protocol (IP)

Network Technology

Application

Communication System

Figure 1.2 �
When two systems communicate,

their protocols interface directly with
other protocols within each individual

system. Effectively, however,
protocols at each layer communicate

with their peers in the other system.

Introduction 7

the process. First the http process constructs the message it
wants to send; then, in step 1, it hands that message to a tcp
process. The tcp process adds tcp-specific information to
the message, creating a tcp segment. This addition acts a lot
like envelopes do for regular letters. Letters themselves carry
the real information, but we enclose them in envelopes for
the benefit of the postal service. The postal service uses the
addressing information on envelopes to deliver mail, without
caring about the letters’ contents. In step 2, the tcp process
passes the segment to the ip process. The ip process builds
on this segment by adding more information, in effect add-
ing another envelope. The result is an ip datagram that, in
step 3, reaches the protocol implementation controlling the
system’s network technology. Only in step 4, after still more
information is added to the original message, does the in-
formation actually leave the computer system. It leaves in the
form of a packet or frame.

HTTP Message

HTTP MessageTCP

IP Datagram

TCP SegmentIP

TCP Segment

Application
(HTTP)

Transport
(TCP)

Internet
(IP)

Network
Technology

network packet/frame

IP Datagramnet.

1

2

3

4

Communication System (Web Browser)

� Figure 1.3
When the HTTP application has a
message to send, it hands that
message to a lower layer protocol. The
message continues down through the
entire protocol stack until it leaves the
system. As this figure shows, each
protocol has its own name for the unit
of data it sends and receives. TCP calls
its units segments; IP calls them
datagrams, and the network
technology sends and receives
packets or frames.

8 HTTP Essentials

Figure 1.4 completes the example by showing what happens
when the packet reaches the Web server. It may have trav-
eled through many other systems and across a variety of net-
work technologies to get there, but those intermediate steps
aren’t important to the browser or the server. The process
that figure 1.4 shows is really just the reverse of the first four
steps. Each protocol layer accepts the message, processes it as
needed, and passes the extracted information up to the next
highest protocol. Eventually, in step 8, the original http
message arrives at the Web server application.

In this book we’ll mostly concern ourselves with application
layer protocols—primarily http, though chapter 5 intro-
duces a few other related application protocols. Because
http relies on tcp to carry its messages, however, we will
occasionally discuss the interactions between http and tcp;
those interactions can have a significant effect on http per-
formance, and they have led to the development of many
important features in http.

HTTP Message

HTTP MessageTCP

IP Datagram

TCP SegmentIP

TCP Segment

Application
(HTTP)

Transport
(TCP)

Internet
(IP)

Network
Technology

network packet/frame

IP Datagramnet.

8

7

6

5

Communication System (Web Server)

Figure 1.4 �
HTTP messages that arrive in a system

pass up through the protocol stack
until they reach the application layer.

Each protocol layer removes its own
specific information, as network

packets become IP datagrams and
then TCP segments. Ultimately, the

HTTP message arrives at the HTTP
application process.

Introduction 9

1.3 Uniform Resource Identifiers

Most likely, you’re already familiar with Uniform Resource
Locators, or urls. They are the addresses we use to name
Web sites; http://www.waterscreek.com is an example. You
might be a little surprised, though, when you see that http
continually refers to Uniform Resource Identifiers, or uris.
Actually, there isn’t really much difference between the two
concepts. Technically, a url is just one type of a uri. After
all, one way to identify an object is to describe its location.
As a practical matter, though, the two terms are equivalent.
This book generally uses uri because that’s the term in the
http specifications. If, whenever you see “uri,” you mentally
translate it as “url,” you won’t suffer any ill effects.

In any case, a uri can actually contain quite a lot of informa-
tion, and a thorough understanding of the uri structure is
helpful in appreciating some aspects of http. Figure 1.5
shows a sample uri with nearly all the possible elements.
(Entering this uri in a Web browser actually worked when
this book was written; of course, there’s no guarantee that
will still be the case after publication.) Table 1.1 lists the uri’s
components, along with a description of each one’s use.

http://guest:secret@www.ietf.org:80/html.charters/wg-dir.html?sess=1#Applications_Area

http

http://guest:secret@www.ietf.or g:80

http://guest:secret@www.ietf.org:80 /html.charters

http://guest:secret@www.ietf.org:80/html.charters/ wg-dir.html

http://guest

http://guest:secret@www.ietf.org:80/html.charters/wg-dir.html?sess=1 #Applications_Area

protocol

username

port

path

http://guest:secret

http://guest:secret@www.ietf.org

password

host

file

fragment

query http://guest:secret@www.ietf.org:80/html.charters/wg-dir.html? sess=1

� Figure 1.5
A Uniform Resource Identifier (URI)
includes many individual
components.

http://www.waterscreek.com
http://guest:secret@www.ietf.org:80/html.charters/wg-dir.html?sess=1#Applications_Area

10 HTTP Essentials

Table 1.1 Components of a Uniform Resource Identifier

Component Use

protocol Identifies the application protocol needed to access the

resource, in this case HTTP.

username If the protocol supports the concept of user names, this

provides a user name that has access to the resource;

the example has a user name “guest.”

password The password associated with the user name, “secret” in

the example.

host The communication system that has the resource; for

HTTP this is the Web server, www.ietf.org in the exam-

ple.

port The TCP port that the application protocols should use

to access the resource; many protocols have an implied

TCP port (for HTTP that port is 80), but it can be over-

ridden here if necessary.

path The path through a hierarchical organization under

which the resource is located, often a file system’s direc-

tory structure or equivalent.

file The resource itself.

query Additional information about the resource or the client.

fragment A particular location within a resource.

1.4 Organization of This Book

The rest of this book consists of four chapters and two ap-
pendices. The next chapter, chapter 2, begins our look at the
Hypertext Transfer Protocol. That chapter describes the op-
eration of the protocol, focusing on what http does without
worrying too much about the protocol’s internal details. We
won’t ignore those internal details, however. They are the
subjects of chapter 3, which looks in detail at the structure of
http messages. The following two chapters consider two
key aspects of any practical use of http, security and per-
formance. Chapter 4 looks in depth at securing http com-
munications using both the facilities of http itself as well as

Introduction 11

various additional protocols. Chapter 5 provides an overview
of the many additional protocols and technologies that can
improve http performance, particularly load balancing and
caching. This book focuses on the latest version of http,
version 1.1. In appendix a, however, we look at the relation-
ship between version 1.1 and earlier http versions; we’ll also
consider how well common implementations support http
version 1.1. The final appendix ties together many of the as-
pects of http covered throughout the book. Instead of de-
scribing and explaining the technology, however, it looks at
how to apply the technology to an important and practical
problem, building bullet-proof Web sites. The book closes
with an annotated list of references, a glossary, and an index.

13

CHAPTER 2

HTTP Operation —
How Clients & Servers Use HTTP

This chapter explores what http allows communicating
systems to do, and how those systems go about doing it. The
first section of this chapter introduces a concept fundamental
to http’s operation—the distinction between clients and
servers. The following three sections divide http’s functions
into three types, based on how Web systems use them:
Actions that users initiate, functions that clients like Web
browsers invoke that are often transparent to users, and
operations that take place deep in the network. The chapter
concludes with an explanation of an important and often
controversial http feature, state management through
cookies.

2.1 Clients and Servers

Like many communication protocols, http makes a key dis-
tinction between the two communicating parties. In any
http exchange, one system assumes the role of a client while
the other is a server. This difference is very important, as

14 HTTP Essentials

http requires clients and servers to follow very different
rules and procedures. In a simple Web session, the Web
browsing pc is an http client, while the system hosting the
Web site acts as an http server. Even though these two sys-
tems both communicate using http, they obviously have
vastly different responsibilities in that communication. As
we’ll see in this section, the client, who always initiates http
communications, controls several important characteristics of
the session, including the underlying tcp connection, persis-
tence, and pipelining.

2.1.1 Initiating Communication

The most obvious difference between http clients and serv-
ers is responsibility for initiating communication. Only a
client can do that. A server may have a lot of information it
can provide and many functions it can perform, but it does
something only when asked to do so by a client. An http
client acts, and an http server reacts.

Figure 2.1 illustrates a typical exchange. The Web browser, in
its role of client, sends a request to a Web server. The server
then returns a response to that client. A client may take fur-
ther action based on the server’s response, but http consid-
ers that action to be an entirely new exchange. The new
exchange, like every http exchange, begins with a client’s
request.

Web Browser Web Server

Internet

Client Server

1 request

2 response

Figure 2.1 �
The client begins a communications
exchange by sending a request to a

server. The server simply responds to
client requests. It does not initiate

communications on its own.

HTTP Operation 15

2.1.2 Connections

Like any application protocol that uses tcp, http requires a
tcp connection. Because the http client is responsible for
initiating http communications, the client is also responsi-
ble for initiating the process that creates the tcp connection.
As figure 2.2 shows, this process requires the exchange of
three tcp messages. The tcp messages are shown in gray
text.

After the initial tcp exchange, the client can send its http
request. That request and the server’s response are in black
text. The figure also shows the messages required to close a
tcp connection. The server initiates this exchange because it
knows when it has fulfilled the client’s request.

2.1.3 Persistence

The first versions of http required clients to establish a
separate tcp connection with each request. For simple Web
pages, this requirement did not present much of a problem.
As Web sites grew more complex and graphic, however, tcp
connection establishment began to have a noticeable effect

4 HTTP Request

7 TCP FIN, ACK

6TCP FIN

5HTTP Response

3 TCP ACK

1 TCP SYN

Client Server

2TCP SYN, ACK

TCP Connections

Figure 2.2 highlights key

characteristics of TCP messages.

The first message that the client

sends has a SYN, for “synchronize,”

flag. The SYN indicates that the

client wishes to establish a

connection. The server responds

by setting the SYN and ACK (for

“acknowledge”) flags, indicating

its willingness to accept the

connection. The client completes

the connection establishment by

sending a TCP message with only

the ACK flag. These three

messages are usually called the

“three-way handshake.” Closing

the connection requires only two

messages. The first has the FIN (for

“finished”) flag, and the second

has both the FIN and ACK flags

set.

� Figure 2.2
Before systems can exchange HTTP
messages, they must establish a TCP
connection. Steps 1, 2, and 3 in this
example show the connection
establishment. Once the TCP
connection is available, the client
sends the server an HTTP request. The
final two steps, 6 and 7, show the
closing of the TCP connection.

16 HTTP Essentials

on Web performance. That’s because complex Web pages
consist of many separate objects, and the client must issue a
separate http request to retrieve each of those objects. The
Web page of figure 2.3, for example, contains over 20 objects
(the page itself, plus the individual graphic elements). With
early versions of http, Web browsers would have to estab-
lish more than 20 separate connections before they could
display the page.

Version 1.1 of the http protocol eliminates the problem of
multiple tcp connections with a feature known as persistence.
(Although persistence was introduced in http version 1.0
not all systems could support it; with version 1.1 it is the de-
fault behavior.) Persistence allows a client to continue to use
an existing tcp connection after its initial request has been
fulfilled. The client simply issues a new request on the same
connection. Figure 2.4 shows this behavior in operation.

Figure 2.3 �
Complex Web pages such as this one
contain many objects, each of which

requires its own HTTP message
exchange to retrieve. In this example,

the main page is one object, and each
individual graphic element is a

separate object. Altogether, a client
must issue 20 separate HTTP requests

before it can display the page.

HTTP Operation 17

Persistence requires cooperation from both the client and the
server. The client, obviously, must make the decision to use a
connection persistently. It can do so, however, only if the
server allows it. The server must not close the tcp connec-
tion after fulfilling the client’s initial request.

2.1.4 Pipelining

Persistence allows another http feature that improves per-
formance—pipelining. With pipelining, a client does not
have to wait for a response to one request before issuing a
new request on the connection. It can follow the first request
immediately with a second request. Figure 2.5 shows how a
client can use pipelining to send requests without waiting for
responses.

Client Server
4 HTTP Request

9 TCP FIN, ACK

8TCP FIN

7HTTP Response

3 TCP ACK

1 TCP SYN

2TCP SYN, ACK

5HTTP Response

6 HTTP Request

� Figure 2.4
With persistent connections, a client
can issue many HTTP requests over a
single TCP connection. The first
request is in step 4, which the server
answers in step 5. In step 6 the client
continues by sending the server
another request on the same TCP
connection. The server responds to
this request in step 7 and then closes
the TCP connection.

18 HTTP Essentials

The graph in figure 2.6 compares the performance of
pipelining, persistence, and single, serial connections. The
figure shows the time it takes to display a Web page
consisting of a number of objects. The graph assumes that a

0

1

2

3

4

5

5 10 15 20

Number of Objects in Page

Display Time (seconds)

Separate
Connections

Persistence

Pipelining

0

1

2

3

4

5

5 10 15 20

Number of Objects in Page

Display Time (seconds)

Separate
Connections

Persistence

Pipelining

Client Server

9 TCP FIN, ACK

8TCP FIN

3 TCP ACK

1 TCP SYN

2TCP SYN, ACK

4 HTTP Request 1

5 HTTP Request 2

7HTTP Response 2

6HTTP Response 1

Figure 2.6 �
Both persistence and pipelining

can offer significant improvements
in HTTP performance, especially

for complex Web pages with many
objects. As the graph shows, a

Web page with 20 objects (not
atypical) can take about 4 seconds

when the client uses serial
connections. Persistence and

pipelining together can reduce this
time to less than 1 second.

Figure 2.5 �
Pipelining lets an HTTP client issue

new requests without waiting for
responses from its previous

messages. In the figure, the client
sends its first request in step 4. It
immediately follows that with a

second request in step 5. The client
does not wait for the server’s

response, which arrives in step 6.

HTTP Operation 19

number of objects. The graph assumes that a 50 ms delay
separates the browser and server, and that the browser con-
nects using a 56 Kbit/s dial-up modem. As the figure indi-
cates, the enhancements http 1.1 introduces can make a
significant difference in performance.

2.2 User Operations

The http protocol defines four basic operations—GET, POST,
PUT, and DELETE. We consider these to be user operations
because, at least in the context of Web browsing, they are
each the direct result of user actions. As we’ll see in later
sections, user actions may cause other http exchanges, and
it doesn’t take an end user to initiate one of these. Still, the
four operations of this section remain the most basic http
operations.

2.2.1 Web Page Retrieval – GET

The simplest http operation of all is GET. It is how a client
retrieves an object from the server. On the Web, browsers
request a page from a Web server with a GET. For example,
clicking on the link in the middle of figure 2.7 will force the
browser to issue a GET request to the server asking for the
new Web page to display.

As figure 2.8 shows, GET is a simple two-message exchange.
The client initiates it by sending a GET message to the server.
The message identifies the object the client is requesting
with a Uniform Resource Identifier (uri).

If the server can return the requested object, it does so in its
response. As the figure shows, the server indicates success
with an appropriate status; 200 OK is the status code for a
successful response. Along with the status code, the server
includes the object itself in its response. If the server cannot
return the requested object (or chooses not to), then it can

20 HTTP Essentials

return any number of other status codes. Section 3.3 details
all of the status codes http defines.

2.2.2 Web Forms – POST

Although Web browsing began mostly as a way to view
pages of information, it soon grew to encompass two-way
interaction. While GET lets a server send information to a

Client Server

2
200 OK
+ Data

1 GET URI

Figure 2.7 �
Following a simple link on a Web

page causes the browser to send a
GET request for the new page to

the server. In this example, clicking
on the “… Computers” link will

cause the browser to issue a GET
request for the new page.

Figure 2.8 �
A server responds to a GET request by

returning the requested resource,
often a new Web page. The new page

is the data in the response.

HTTP Operation 21

client, the POST operation provides a way for clients to send
information to servers. Web browsers most commonly use
POST operations to send forms to Web servers. Figure 2.9
shows an example of such a form. It is a Web page that al-
lows users to search for Internet standards. When a user
clicks on the “Search Database” button, the browser sends a
POST request to the server; the request includes the informa-
tion the user has provided in the form.

Client Server

2
200 OK
+ Data

1
POST URI

+ Data

� Figure 2.9
Submitting a Web form often has the
browser send a POST request to the
server. The POST message includes
the form’s data. In this example the
POST data will include the search term
(“HTTP”), the scope (All Fields), the
results per page (25), and the link
method (FTP).

� Figure 2.10
A server responds to a POST request
by returning new information such as
search results. This information is
carried as data in the response.

22 HTTP Essentials

As figure 2.10 shows, the POST operation is nearly as simple
as GET. The client sends a POST message and includes the
information it wishes to send to the server. Like the GET
message, part of the POST message is a Uniform Resource
Identifier (uri). In this case, the uri identifies the object on
the server that can process the included information. On
Web servers, this uri is frequently a program or a script.

Also as with the GET operation, a server can return informa-
tion itself as part of the response. For Web browsing, this
information is typically a new Web page to display, often a
page acknowledging the user’s input; in the case of a search
form, the new Web page often shows the search results.

2.2.3 File Upload – PUT

The PUT operation also provides a way for clients to send
information to servers. It is significantly different from the
POST operation, even though, as figure 2.11 shows, the two
look very similar. As with a POST, the client sends a method,
a uri, and data. The server returns a status code and, option-
ally, data.

The difference between POST and PUT is in how the server
interprets the Uniform Resource Identifier. With a POST, the
uri identifies an object on the server that can process the
included data. With a PUT, on the other hand, the uri identi-
fies an object in which the server should place the data.
While a POST uri generally indicates a program or script, the
PUT uri is usually the path and name for a file. Figure 2.12
shows an example of the PUT operation in action. On this

Client Server
1

PUT URI
+ Data

2
200 OK
+ Data

Figure 2.11 �
Clients can use the PUT request to

send a new object to a server. The URI
that’s part of the request tells the

server where to put the object.

HTTP Operation 23

page the user has identified a local file. By clicking on the
Upload button, the user asks the browser to send a PUT re-
quest to the server.

2.2.4 File Deletion – DELETE

With GET and PUT operations, http becomes a serviceable
protocol for simple file transfers. The DELETE operation
completes this function by giving clients a way to delete ob-
jects from servers. The message exchange contains no sur-
prises. As figure 2.13 shows, the client sends a DELETE
message along with the uri of the object the server should
remove. The server responds with a status code and, option-
ally, more data for the client.

� Figure 2.12
The PUT request may be used to
upload a file to a server. In this
example the user wants to store the
indicated file on the server.

24 HTTP Essentials

2.3 Behind the Scenes

The basic http operations generally occur as a direct result
of end-user actions. Those four operations are not the only
ones the protocol defines, however. Three additional opera-
tions, OPTIONS, HEAD, and TRACE, frequently take place be-
hind the scenes. Clients use them to communicate with
servers not so much to perform user actions but to prepare
for or diagnose problems with the basic operations.

Although this section does not discuss it further, the http
specification also reserves the name for another operation,
CONNECT. The standard does not define how CONNECT works,
except to indicate that it is intended to support tunneling.
(See section 2.4.3.) Future extensions to http may define
CONNECT in more detail.

2.3.1 Capabilities – OPTIONS

Clients can use an OPTIONS message to discover what capa-
bilities a server supports. The exchange is the standard re-
quest and response, as figure 2.14 illustrates. If the client
includes a uri, the server responds with the options relevant
to that object. If the client sends an asterisk (*) as the uri,
the server returns the general options that apply to all objects
it maintains.

A client might use the OPTIONS message to determine the
version of http that the server supports or, in the case of a
specific uri, which encoding methods the server can provide
for the object. Such information would let the client adjust

Client Server
1 DELETE URI

2
200 OK
+ Data

Figure 2.13 �
The DELETE operation lets a client

remove an object from a server. The
URI identifies the object to delete.

HTTP Operation 25

how it interacts with the server or how it actually requests a
specific object.

2.3.2 Status – HEAD

The HEAD operation is just like a GET operation, except that
the server does not return the actual object requested. As
figure 2.15 shows, the server returns a status code but no data.
(HEAD is short for “header,” as the server returns only message
headers in response.) Clients can use a HEAD message when
they want to verify that an object exists, but they don’t need
to actually retrieve the object. Programs that verify links in
Web pages, for example, can use the HEAD message to ensure
that a link refers to a valid object without consuming the
network bandwidth and server resources that a full retrieval
would require. Cache servers can also use the HEAD operation;
it gives them a way to see if an object has changed without
actually retrieving the full object.

2.3.3 Path – TRACE

The TRACE message gives clients a way to check the network
path to a server. When a server receives a TRACE, it responds

Client Server
1 OPTIONS URI

2
200 OK +
Options

Client Server
1 HEAD URI

2200 OK

� Figure 2.15
The HEAD request mimics a GET
operation, except that the server does
not actually return the requested
object, only HTTP headers.

� Figure 2.14
Clients can use an OPTIONS request to
ask about a particular object or about
the server itself. The server returns the
options data in its response.

26 HTTP Essentials

simply by copying the TRACE message itself into the data for
the response. Figure 2.16 shows the simplest case.

TRACE messages are more useful when multiple servers are
involved in responding to a request. An intermediate server,
for example, may accept requests from clients but turn
around and forward those requests onto additional servers.
(Proxies and cache servers, described in the next section, are
examples of such intermediate servers.) When an interme-
diate server is involved, TRACE works as in figure 2.17. The
intermediate server modifies the request by inserting a Via
option in the message. This Via option is part of the message
that arrives at the destination server, and it is copied into the
data of the server’s response. When the client receives the
response, it can see the Via option in the data and identify
any intermediate servers in the path. Section 3.2.34 describes
this process in more detail.

2.4 Cooperating Servers

With the exception of the TRACE message, this chapter has so
far focused on the communication between a single client

Client Server
1 TRACE

2
200 OK +
Message

Client
1 TRACE

4
200 OK +
Message

Ultimate
Server2

TRACE
+ Via

3
200 OK +
Message

Intermediate
Server

Figure 2.16 �
Servers respond to TRACE requests by

echoing the request in their reply.

Figure 2.17 �
The TRACE request lets clients

discover the path their messages
follow through a network of

intermediate servers.

HTTP Operation 27

and a single server. The http protocol defines more complex
interactions, however, that frequently involve multiple servers
cooperating on a client’s behalf. In this section, we’ll look at
the different ways that multiple servers may be involved in a
communication exchange.

2.4.1 Virtual Hosts

Of all the enhancements that http version 1.1 adds to ver-
sion 1.0, one of the smallest is direct support for virtual hosts.
But although the protocol change is small, this feature is a
major benefit for the World Wide Web. Virtual host support
addresses a key element of the Web’s architecture that the
designers of version 1.0 did not anticipate—Web hosting
providers.

The popularity of the Internet has created a tremendous de-
mand for Web sites, as organizations ranging from corpora-
tions to individuals (and even pets!) establish a presence on
the Web. In many cases, though, it is impractical or ineffi-
cient for the organization itself to own and operate the serv-
ers and network infrastructure a Web site requires. To meet
this demand, traditional Internet Service Providers, tele-
communications carriers, and specialized service providers
can host Web sites on behalf of other organizations. A sig-
nificant majority of sites on the Internet are modest and re-
quire little resources from the systems on which they run.
Because they don’t require a dedicated server, for example,
most Web hosting providers actually run many separate Web
sites on a single server, as figure 2.18 illustrates.

The problem facing a Web server hosting multiple Web sites
is simply stated: When a client requests a Web page, how
does the server know which site the client is attempting to
access? Consider a client request for the Web page corre-
sponding to http://www.company1.com/news.html. The cli-
ent first resolves the host part, www.company1.com, to an ip
address. Then, as figure 2.19 shows, it establishes a tcp con-
nection and sends the http command GET news.html to

28 HTTP Essentials

that address. Note, though, that the Web server does not
participate in the dns resolution, so it doesn’t know which
host the client intends to contact. The Web server has no
way of knowing whether “news.html” refers to com-
pany1.com or company2.com.

Prior to http 1.1, Web hosting providers had only two ways
to solve this problem. They could require the Web sites to
use unique uris for all their pages. So if company1.com had a
page named “news.html” on its site, company2.com could not
use that same name within its pages. In practice, Web host-
ing providers implemented this solution by requiring a site
identifier in all path names. For example, instead of the
straightforward uri “http://www.company1.com/news.html,”
the company1.com Web site might use the more complicated

www.company1.com

Internet

Web Browser Physical
Web

Server
www.company2.com

Domain
Name

System

1Query
www.company1.com

2 IP Address

3 GET /news.html

www.company1.com

Internet

Web Browser Physical
Web

Server
www.company2.com

Virtual Hosts

Figure 2.19 �
Virtual hosts can make it difficult for
the Web server to determine which

Web site the client is trying to
access. In this case the physical Web

server has no idea which Web
address the client requested

because it did not participate in the
DNS exchange that mapped the

host name to its IP address.

Figure 2.18 �
Virtual hosting lets many Web

addresses share the same Web server.
This configuration is typical in ISPs
that provide Web hosting for small

businesses and individuals.

HTTP Operation 29

“http://www.company1.com/company1.com/news.html.” As
an alternative, Web hosting providers could assign separate
ip addresses to each site on their servers. The servers then
determine which site a client has requested by examining the
ip address to which the client connects. Servers end up with
multiple ip addresses, and ip addresses are scarce resources.

With version 1.1, http addresses the problem of virtual hosts
with a simple addition to the client’s request. That addition
is the Host header, in which the client must place the host
name of the site it is requesting. As figure 2.20 shows, the
server can easily determine the site to which a request ap-
plies, and it can return the appropriate resource.

2.4.2 Redirection

While virtual host support allows a single server to support
multiple Web sites easily, redirection offers a way to support
a single site to use multiple servers. Redirection lets a server
redirect a client to another uri for an object. Figure 2.21
shows the process. First the client requests an object from
the first Web server. Instead of returning the requested ob-
ject, however, the server replies with a 301 Moved status
code. The response also indicates a new uri for the object.
The client recognizes this uri and, in step 3, reissues the re-
quest. This time the GET succeeds, and the second server re-
turns the actual object.

www.company1.com

Internet

Web Browser Physical
Web

Server
www.company2.com

GET /news.html
Host: www.company1.com

� Figure 2.20
The Host feature in HTTP version 1.1
lets clients explicitly identify the Web
site they are accessing, so the virtual
hosting Web server can return the
right content.

30 HTTP Essentials

Redirection is essential to the very dynamic Web environ-
ment. It provides a convenient way to support revisions
within a Web site, relocation of content, and even the change
of a corporate identity.

Note that the redirection does not have to specify a different
host. Frequently, in fact, redirection is used to inform the
client of a new path for the resource on the same host. Note
also that there are other techniques for accomplishing the
same effect. The server can, for example, answer the original
request by providing a JavaScript object that automatically
directs the client to a new location.

2.4.3 Proxies, Gateways, and Tunnels

Another way that http servers can cooperate with each
other is by acting as proxies, gateways, or tunnels. In each of
these roles, the server that the client first contacts relays the
request to a new server and then relays the second server’s
response back to the client. Figure 2.22 shows a proxy server
in operation.

In the figure, the client first sends its http request directly
to the proxy server. That server, however, cannot (or chooses
not to) respond to the client immediately. Instead, it re-
issues the request to a second server, which the figure labels

Internet

Web Server
3

Web Server

GET

4

1

2

200 OK

301 Moved

GET

Web Browser

Figure 2.21 �
A server redirects a client to tell the
client that the object it requested is
located elsewhere. When, in step 2,

the client receives a 301 Moved
response, it looks for a new URI in the

response message and issues a new
GET request for that URI.

HTTP Operation 31

the “origin server” (so called because it is the origin of the
requested object). In the most basic case, the second GET has
a uri identical to that of the first; it’s simply sent to a new
server. That server treats the second GET as if it had come
from a client and responds with the requested object. The
proxy server then has the information the client originally
requested, and it returns that object to the client in step 4.

Although figure 2.22 shows a single proxy server, http al-
lows multiple proxies to participate in satisfying a request.
The proxies form a chain as in figure 2.23, handing off the
request from one to the other until the requested object can
be found. The proxies then pass that object back to the client
in the reverse direction. As each server processes a request, it
adds its own identity to the Via header in the request. By the
time the request arrives at the ultimate final server, the Via

Client proxy1 proxy2 origin

1 GET URI 2
GET URI
Via: proxy1

3
GET URI
Via: proxy1, proxy2

4 200 OK5
200 OK
Via: proxy2

6
200 OK
Via: proxy2, proxy1

Origin Server

Internet

1

Proxy Server

GET

4 200 OK

2 GET

3 200 OK

Web Browser

� Figure 2.23
Proxy servers create or update the Via
option as they relay requests or
responses. This option may make it
easier to diagnose network problems.

� Figure 2.22
A proxy server positions itself in
between clients and servers. It
forwards requests on behalf of clients
and relays responses from the servers.

32 HTTP Essentials

header will have captured the path taken by the request
through the server chain. The response follows the same
process, with each intermediate system inserting its identity
in the Via header. (Note that figure 2.23 shows only a partial
Via header; for complete details, see section 3.2.50.)

Proxy servers perform several important functions for http
communications. The most common is in support of cach-
ing, which section 2.4.4 discusses in more detail. Other uses
include enforcing policy for an organization. A corporation
can direct all its internal clients to use a proxy server to ac-
cess the public Internet, allowing the proxy server to filter
that Internet access appropriately. Frequently this type of
operation is part of a firewall. Proxy servers have also been
used to provide anonymity to Web browsers, preventing
servers from discovering identifying information about actual
clients.

If, as is common, a proxy serves multiple origin servers, then
the client must usually include the absolute uri in its re-
quests. Without the full uri, the proxy may not be able to
tell which server the client wishes to contact. Because this
behavior is unusual for many clients, and because clients
must know to send their requests to proxy servers rather than
the ultimate destination, they must often be explicitly con-
figured to use a proxy server. Chapter 5 describes some of the
mechanisms that system administrators can use to automati-
cally configure proxy servers for their users.

Gateways and tunnels operate very much like proxy servers;
however, there are subtle differences. Gateways act as an
endpoint to a server chain, but they still rely on other servers
to provide all or part of the requested object. In many cases,
gateways use a protocol other than http to access the object.
In figure 2.24, for example, the gateway uses the Structured
Query Language to retrieve information from a database
management system.

HTTP Operation 33

While gateways act as a definite endpoint to a server chain,
tunnels are exactly the opposite. As figure 2.25 indicates, they
are relatively transparent to the original client; the client may
not even be aware that a tunnel exists. Tunnels do provide
some service, however. In the example of figure 2.25, the tun-
nel establishes a secure connection to the actual server, add-
ing security to the communication between client and server.
Note that although http 1.1 defines the operation of tunnels
in general terms, as of this writing few practical implementa-
tions are available.

2.4.4 Cache Servers

Cache servers are a specialized type of proxy servers whose
main function is to improve Web performance. They do that
by remembering the objects requested by clients and, if the

ServerTunnel
Client

1 GET

2 200 OK

Secure

DBMS

3

SQL result

Client Gateway

Internet

1 HTTP request
2 SQL query

4 HTTP response

� Figure 2.25
A tunnel allows a client to
communicate directly with a distant
server. In this example the tunnel
creates a secure path for the client’s
request and the server’s response.

� Figure 2.24
A gateway accepts HTTP requests
and translates them to a different
format such as SQL. The gateway
also ensures that any reply is a
proper HTTP response.

34 HTTP Essentials

same object is requested again (either by the same client or a
different client), returning the object that they’ve remem-
bered instead of re-requesting it from the origin server. Fig-
ures 2.26 and 2.27 show the process.

The first figure shows standard proxy operation. The key to a
cache server’s operation is that it remembers the requested
object, generally by saving a copy on its local disk or in its
memory.

Figure 2.27 shows the payoff for the cache server. In this fig-
ure, a new client requests the same object as in figure 2.26.
This time, however, the cache server does not need to con-
tact the origin server. It simply returns the saved object from
its local disk or memory.

Cache servers improve Web performance at both the client
and the origin server. For the client, they shorten the dis-
tance to the object the client needs. As figures 2.26 and 2.27
illustrate, a cache server may be located on the same local
area network as its clients. Local networks typically have
higher bandwidth than wide area Internet connections, and
the transmission delay across a local network is generally
much less.

Cache servers also improve performance by reducing the
load on the origin server. When a cache server returns an
object to a client, that’s one less request to bother the origin

Origin Server

Internet

1

Cache Server

GET

4

200 OK

2 GET

3 200 OK

Web Browser

Figure 2.26 �
Cache servers are proxy servers that

relay requests and responses. In
addition, they keep a local copy of any

responses they receive.

HTTP Operation 35

server. Fewer requests mean less processing and memory re-
sources that the origin server requires, as well as less band-
width it needs for its connection to the Internet.

One of the more complicated issues facing a cache server is
knowing how long the objects it has stored in its cache re-
main valid. Given the dynamic nature of the Web, an object
that an origin server returns at one moment may be super-
ceded by a new object in the next moment. When that hap-
pens, the cache server must not return the object from its
cache, but, rather, it must re-query the origin server to re-
trieve the new object.

As we’ll see in section 3.2, http 1.1 includes several headers
just to support cache servers. Those headers tell cache servers
whether an object can be cached and, if so, how long it can
be safely stored. Section 5.2 examines cache server operation
in more detail, focusing on those aspects outside the scope of
the http specification itself.

2.4.5 Counting and Limiting Page Views

Whenever an intermediate cache server processes client re-
quests, the origin server can lose some control over its inter-
actions with clients. In many ways that is a benefit, as cache
servers reduce the load on origin servers and can significantly
improve their performance. There are some disadvantages,

Web Browser

Origin Server

Internet

5

Cache Server

GET

6 200 OK

Web Browser

� Figure 2.27
When a new client asks for the same
object, the cache server returns its
local copy instead of sending another
request all the way to the origin
server. This speeds up the response,
and it saves bandwidth for the
Internet connection.

36 HTTP Essentials

though. For some Web sites, having a cache deliver pages to
clients is a significant problem because it means the origin
server does not know how often users view its content.
When the site derives revenue from advertising, being able
to count the number of site users may be critical to maximiz-
ing that revenue. As a consequence, many Web servers delib-
erately designate their content as non-cachable, even when
caching is otherwise both possible and desirable. The devel-
opers of http have recognized this problem and introduced
a technique that allows caching and yet still gives origin
servers a way to count and, if desired, limit page views by the
cache server clients. This technique is an extension to the
base http specification; it is documented in rfc 2777.

The process begins when a proxy inserts a Meter header into
a request message as it forwards the message on. (See section
3.2.35 for details of this header.) Steps 2 and 3 of figure 2.28
show this process. By inserting the header here, the proxy

Client 1 Proxy A Proxy B Origin Server

1 GET URI 2
GET URI
Meter:

Proxy C

Client 2

3
GET URI
Meter:

4
200 OK
Meter: do-report5

200 OK
Meter: do-report

6 200 OK

Figure 2.28 �
Proxies that support metering

insert the Meter header in requests
passing through them. Servers ask
for metering on a particular object

by including the Meter header in
their replies.

HTTP Operation 37

indicates its willingness to report on and limit the number of
times it returns the resulting response from its cache.

The origin server responds to this invitation by including a
Meter header in its response. This header tells the proxies
how to handle the object with respect to reporting and usage
limitations.

Later, when another client requests the same object, the
proxies that have a cached copy will need to validate that
copy with the origin server. When they do, as figure 2.29
shows, they update the Meter header in their requests. This
meter information is a report of the number of times the
cached entry has been provided to clients.

2.5 Cookies and State Maintenance

The http protocol normally operates as if each client
request is independent of all others. The server responds to
any request strictly on the merits of that request, without

Client 1 Proxy A Proxy B Origin Server

Proxy C

9
HEAD URI
Meter: count=N/M

7 GET URI

8 GET URI

Client 2

� Figure 2.29
Proxies that are metering an object
report their results when they send
the origin server a new request
relating to the object. In this
example proxy B issues a HEAD
request to make sure its cached
copy is still valid. It includes a Meter
header in the request.

38 HTTP Essentials

reference to other requests from the client (or, for that
matter, any other client). This type of operation is known as
stateless because the server does not have to keep track of the
state of its clients.

Because maintaining state requires server resources (memory,
processing power, etc.), stateless operation is usually desir-
able. In some applications, however, the server needs to keep
some state information about each of its clients. Users that
successfully log in to a Web site, for example, shouldn’t have
to log in again every time they view a different page on that
site. A server can avoid this inconvenience by tracking the
state of the client. The first time the client requests a page
from the site, the server requires the user to log in. As the
user continues to browse the site and make additional http
requests, however, the server remembers the previously suc-
cessful login and refrains from requesting additional logins.

2.5.1 Cookies

State maintenance requires one critical capability: Servers
must be able to associate one http request with another.
The server must be able to tell, for example, that the user
requesting a new page really is the same user that has already
logged in, not a different user that has not been authorized.
The mechanism that http defines for state maintenance is

Client Server

1 HTTP Request

4HTTP Response

2
HTTP Response

+ Cookie

3
HTTP Request

+ Cookie

Figure 2.30 �
Servers can return state

management cookies in their
responses. Clients, if they wish,

include those cookies in subsequent
requests to the same server.

HTTP Operation 39

known as a cookie. A server creates cookies when it wants to
track the state of a client, and it returns those cookies to the
client in its response. Once the client receives a cookie, it can
include the cookie in subsequent requests to the same server,
as figure 2.30 indicates. The client can continue to include
the cookie in its requests until either (a) the cookie expires or
(b) the server directs the client to discontinue using the
cookie.

Not all Web users like the fact that http supports cookies.
Many users view state maintenance as an invasion of their
privacy. State maintenance, by its very definition, does allow
Web sites to track the browsing behavior of its users. Used
appropriately, however, state maintenance would not likely
raise privacy concerns with most users. Users that click on
the “checkout” button of an online shopping cart, for exam-
ple, probably appreciate that the Web site can remember the
items they’ve added to that shopping cart. In fact, most users
would expect a Web site to keep track of their order; a func-
tion that cookies make much easier. Problems arise when
Web sites use cookies to track users in ways that they do not
expect. For example, an online advertising agency may track
a user as she travels from an online stock broker, to a sport-
ing goods site, and then to an online community, steadily
building a profile of her in order to present her more tightly
targeted advertisements. Without cookies, this type of track-
ing would not be practical.

At first, it might seem that http’s rules governing the use of
cookies would protect users from this type of tracking. After
all, an http client can return a cookie only to the server that
originally issued it. If the online broker sends the browser a
cookie, how can the sporting goods site, which is on a differ-
ent server, retrieve that cookie from the user? The trick, in
this case, is that cookie doesn’t belong to either server.
Rather, it is owned by a third party ad server that has ar-
rangements with both the broker and sporting goods sites.
Figure 2.31 shows the first step in the process, when the user

40 HTTP Essentials

visits the online broker’s site. The Web page from the first
site contains multiple objects. One of those objects is a ban-
ner ad that resides on an ad server operated by the ad agency.
The user’s Web browser dutifully requests all the objects that
make up the page, including the banner. The fact that the ad
resides on a different http server is not a problem. The cli-
ent simply sends its GET request to the server indicated in the
Web page. It is in the response to this GET request that the
server inserts its cookie.

Later, the user browses to the sporting goods site. As figure
2.32 illustrates, the Web page for this site also includes a
banner ad, and that ad also resides on the ad agency’s server.

Web Site 1

Internet

Ad Server

Web Browser

new page with
new banner ad

Web Site 2

Web Site 1

Internet

Ad Server

Web Browser

Web page with
banner ad

Figure 2.32 �
A new Web site may also include

objects from an external server; the
external server can retrieve its cookies

when the client requests those
objects. In the figure Web site 2 also

includes an object from the ad server.
The client will request this object, and,

because it’s communicating with the
same server as before, it may return
the server’s cookies in that request.

Figure 2.31 �
A Web page may include objects from
multiple servers, and each server may

provide its own cookies when
returning its objects. In this example

the main page is from Web site 1, but
the page includes an object from the
ad server. The client will request this

object, and the ad server may include
cookies in its response.

HTTP Operation 41

The Web browser dutifully sends a GET request to that server,
and, because it is the same server that originally provided the
cookie, it includes the cookie in that request. The ad agency
now knows which sites the user has visited. Note, however,
that the ad agency can track information only for sites with
which it has a relationship. If the user visits another Web site
that does not have an agreement with the ad agency, that
Web site will have no banner ad pointing to the ad agency’s
server. Without a banner ad and associated cookie exchange,
the agency will remain unaware of the user’s visit to the site.

 2.5.2 Cookie Attributes

Cookies consist of the series of attributes listed in table 2.1.
The server chooses values for the required attributes and, if it
desires, for the optional attributes as well.

Table 2.1 Cookie Attributes

Attribute Status Notes

NAME Required An arbitrary name for the cookie, assigned by

the server.

Comment Optional A comment that the server can add to the

cookie; it is intended that clients will be able

to inspect the comments for cookies they

have received, in which case the comment

can be used to explain how the server uses

the cookie, possibly reassuring users that

may have privacy concerns.

CommentURL Optional A URL that the server can provide with a

cookie; the URL may elaborate on how the

server uses the cookie.

Discard Optional Instructs the client to discard the cookie once

the user finishes; in effect, this tells Web

browsers not to store the cookie on the user’s

disk drive.
continues…

42 HTTP Essentials

Table 2.1 Cookie Attributes (continued)

Attribute Status Notes

Domain Optional The domain (from the Domain Name System)

for which the cookie is valid; a server may not

specify a domain other than one to which

itself belongs, but it may specify a domain

more general than a single server.

Max-Age Optional The lifetime of the cookie, in seconds.

Path Optional The URLs on the server to which the cookie

applies.

Port Optional A list of TCP ports for which the cookie ap-

plies.

Secure Optional Instructs the client to only return the cookie

in subsequent requests if those requests are

secure; it may be used for cookies that should

not be exposed to eavesdroppers. Note,

however, that HTTP does not specify what

“secure” means in this context.

Version Required The version of HTTP state maintenance to

which the cookie conforms; the current ver-

sion is 1.

2.5.3 Accepting Cookies

When a client receives a cookie, it saves the attributes that
make up the cookie. In addition, if the server has omitted
any of the optional attributes, the client supplies default val-
ues. Table 2.2 lists the default values that clients apply to
missing attributes.

Table 2.2 Default Values for Cookie Attributes

Attribute Default Value if Missing

Discard Defer to the Max-Age attribute value for default.

Domain The domain name of the server that supplied the

cookie originally.

HTTP Operation 43

Table 2.2 continued

Attribute Default Value if Missing

Max-Age Keep the cookie only as long as the current user ses-

sion is active (e.g., do not store the cookie on the user’s

hard disk).

Path The URL for which the cookie was originally returned,

up to, but not including, the file specified by that URL.

Port The cookie applies to any ports. (Note that if the Port

attribute is present in the cookie but has no value, then

the client sets the value of the attribute to the port of

its original request.)

Secure The cookie may be returned with insecure requests.

Note that a client is never required to accept a cookie. Users,
for example, may configure their Web browsers to accept
cookies or not, as figure 2.33 shows. An http server, there-
fore, cannot count on a cookie being accepted, even if the
cookie is appropriately formatted.

Even if a user is willing to accept cookies, the http specifi-
cation requires that the client reject cookies under certain

� Figure 2.33
Most browsers give users some
control over cookies and state
management. This dialog box shows
several options that determine
whether the browser will accept a
cookie. Other browsers distinguish
between persistent cookies (which
are stored on the PC’s disk drive)
and temporary cookies that the
browser deletes as soon as the user
exits the application.

44 HTTP Essentials

circumstances. Rejected cookies are simply ignored by the
client and, therefore, are never included in subsequent re-
quests. Table 2.3 lists the conditions under which a client
must reject a server’s cookie. Note that the client considers
these conditions after it has applied any default attribute val-
ues as outlined in table 2.2.

Table 2.3 Rules for Rejecting Cookies

Conditions Under Which a Client Rejects a Cookie

• The value of the Path attribute is not a prefix of the URL in the

client’s request.

• The value for the Domain attribute does not have any dots within

it (not just at the beginning), unless the value is “.local”.

• The server that returned the cookie does not belong to the do-

main specified by the Domain attribute.

• The host part of the Domain attribute, if present, contains a dot

within it.

• The port of the client’s request is not included in the Port attrib-

ute (unless the Port attribute is absent).

Finally, when a client accepts a cookie, the new cookie super-
cedes any previously accepted cookies that have the same
NAME, Domain, and Path attribute values.

2.5.4 Returning Cookies

Once a client has accepted a cookie and supplied appropriate
default values, it determines when to return the cookie to a
server in subsequent http requests. Table 2.4 outlines the
rules under which a client includes a cookie in a request.
Note that more than one cookie may meet the table’s criteria,
in which case the client should include multiple cookies in
its request.

HTTP Operation 45

Table 2.4 Rules for Returning Cookies

Conditions Under Which a Client Returns a Cookie

• The domain name for the new request must belong to the domain

specified by the cookie’s Domain attribute.

• The port for the new request must be included in the list of ports

of the cookie’s Port attribute, unless the Port attribute was ab-

sent from the cookie (indicating all ports).

• The path for the new request must match the cookie’s Path at-

tribute, or represent a child of the Path attribute.

• The cookie must not have expired, as per its Max-Age attribute.

When the client returns a cookie to a server, it includes the
Domain, Path, and Port attributes if those attributes were
present in the original cookie. It does not include those at-
tributes if they were absent from the original cookie.

47

CHAPTER 3

HTTP Messages —
Syntax of HTTP Communications

Now that we’ve seen how the Hypertext Transfer Protocol
operates, it’s time to look at its messages in detail. Unlike
many other communication protocols, http messages con-
sist of (mostly) English text. Instead of worrying about bits
and bytes in this chapter, we consider the words that the
http specifications define and the rules for putting those
words together. (Those readers whose native language is not
English may take some small consolation in the fact that the
words http defines are not likely to appear in many English
dictionaries.)

This chapter first looks at the overall structure of http mes-
sages. As we’ll see, an http message begins with either a
request line or a status line, which may be followed by vari-
ous headers and a message body. After describing this overall
structure in more detail, the chapter examines every http
header field and every defined status code from all of the
current http specifications.

48 HTTP Essentials

3.1 The Structure of HTTP Messages

As we saw in the previous chapter, http is a client/server
protocol; clients issues requests, and servers respond to those
requests. The http message structure mirrors that division.
There is one format for http requests and another, slightly
different, format for responses. The next two subsections
consider each in turn.

3.1.1 HTTP Requests

Figure 3.1 shows the basic structure of http requests. Each
request begins with a Request-Line. This line of text indi-
cates the method that the client is requesting, the resource to
which the method applies, and the version of http that the
client can support. The Request-Line may be followed by
one or more message headers and a message body. A blank
line follows the Request-Line and any message headers that
are present.

To make the figure more concrete, the text that follows
shows the actual http message that Microsoft’s Internet
Explorer sends when a user accesses the home page of the
Financial Times (www.ft.com). The first line is the Request-
Line, and message headers make up the rest of the text.

Message Headers
(optional)

Request-Line

Blank Line

Message Body
(optional)

General Headers

Request Headers

Entity Headers

Figure 3.1 �
An HTTP request begins with a
Request-Line and may include

headers and a message body. The
headers can describe general

communications, the specific request,
or the included message body.

Ending a Line

As many computer users know,

different operating systems have

different conventions for

indicating the end of a line of text.

Most UNIX systems use the

linefeed character (with an ASCII

value of 10), while the Macintosh

uses the return character (ASCII

13). Not to be outdone, Windows

systems mark the end of a line

with the two-character sequence

of a return followed by a linefeed.

The HTTP specifications follow the

same convention as Windows;

they use the symbol CRLF to

represent the two-character

sequence.

HTTP Messages 49

GET / HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0
 (compatible; MSIE 5.5; Windows NT 5.0)
Host: www.ft.com
Connection: Keep-Alive

The http Request-Line contains, as figure 3.2 highlights,
three separate items. They are a method, a uri, and an http
version, each separated by one or more blank spaces.

GET / HTTP/1.1

method

URI

version HTTP/1.1

GET

/

The specific method appears first in the Request-Line. In
the preceding example the method is a GET, but as table 3.1
indicates, http defines a total of eight different methods
(each described in chapter 2). As the table also indicates,
http servers are required to support only the GET and HEAD
methods; if they support other http methods, however, that
support must adhere to the rules of the http specifications.
The http specifications also leave open the possibility that
other methods may be added in the future.

Table 3.1 HTTP Methods

Method Server Support Use

CONNECT Optional Asks server (usually a proxy) to estab-

lish a tunnel.

DELETE Optional Asks server to delete the indicated

resource.

GET Required Asks server to return requested re-

source.
continues…

� Figure 3.2
An HTTP Request-Line has a method,
a uniform resource identifier (URI),
and an HTTP version indicator.

� The blank line here marks the end
of the message; there’s no message
body.

50 HTTP Essentials

Table 3.1 HTTP Methods (continued)

Method Server Support Use

HEAD Required Asks server to reply as if it were going

to return the requested resource, but

not to include the resource itself in

the response.

OPTIONS Optional Asks server to indicate the options it

supports for the indicated resource.

POST Optional Asks server to pass the message body

to the indicated resource.

PUT Optional Asks server to accept the message

body as the indicated resource.

TRACE Optional Asks server simply to respond to the

request.

The next item in the Request-Line is the Request-uri. This
item provides the uniform resource identifier for the affected
resource. In the example, the Request-uri is /, indicating a
request for the root resource. For requests that don’t apply to
any specific resource (such as the TRACE request or, in some
cases, the OPTIONS request), the client may use an asterisk as
the Request-uri.

The final item of the Request-Line is the http version. As
the example shows, http version 1.1 includes the text
HTTP/1.1 for this item. The first 1 is the major version num-
ber, while the second 1 is the minor version number. The mi-
nor version changes when the http specification changes
significantly enough to affect communications behavior, but
not so much that an older system cannot parse the messages.
The major version number changes whenever the specifica-
tion changes so drastically that an older system will not be
able to parse the new messages. In other words, an http ver-
sion 1.1 server will be able to interpret an http 1.2 message,
but it won’t necessarily be able to respond; the same server,
on the other hand, may not even be able to interpret an
http 2.0 message. Note that the client includes the http

HTTP Messages 51

version in its request to indicate the version it is capable of
supporting. It does not use the version to indicate which fea-
tures are actually employed in a given request. For example, a
client that supports http 1.1 would use that version number
on all its requests, even for requests that include only http
1.0 features.

After the Request-Line, an http request may include one or
more lines of message headers. As figure 3.1 indicates, mes-
sage headers may be general headers, request headers, or en-
tity headers. The general headers apply to the http
communications in general; the request headers apply to the
specific request, and entity headers apply to the message
body included in the request. The next section looks at each
of these headers in more detail.

An http request always includes a blank line after the Re-
quest-Line and any included headers. If the request includes
a message body, that body follows the blank line. The blank
line is important because it lets the server identify the end of
the request, or, if a message body is present, the end of the
headers for the request. Without the blank line, a server re-
ceiving a message could never be sure that additional mes-
sage headers weren’t still in transit. If a message body is
present, the server can’t rely on a blank line to indicate the
end of the message. Instead, however, it counts on the client
to explicitly indicate the size of the message body with entity
headers. By knowing the size of the message body, the server
can find the overall end of the request.

3.1.2 HTTP Responses

As figure 3.3 indicates, http responses look a lot like http
requests. The only significant difference is that responses
begin with a status line rather than a Request-Line.

The text below shows an actual http response, including the
beginning Status-Line. Much like the Request-Line, a
Status-Line contains three items separated by blank spaces,

52 HTTP Essentials

which figure 3.4 also highlights. The line begins with the
highest http version that the server supports. As with the
client, this does not indicate that the response necessarily
includes options defined by that version. An http 1.1 server
that receives a request from an http 1.0 client, for example,
may still indicate HTTP/1.1 in its Status-Line. That server,
however, must be careful to include only http 1.0 options in
its response. Otherwise it may be sending the client informa-
tion that the client cannot understand.

HTTP/1.1 200 OK
Date: Sun, 08 Oct 2000 18:46:12 GMT
Server: Apache/1.3.6 (Unix)
Keep-Alive: timeout=5, max=120
Connection: Keep-Alive
Content-Type: text/html

<html>...

Message Headers
(optional)

Status-Line

Blank Line

Message Body
(optional)

General Headers

Response Headers

Entity Headers

HTTP/1.1 200 OK

version

status code

reason OK

HTTP/1.1

200

Figure 3.3 �
An HTTP response begins with a

Status-Line and may include headers
and a message body. The headers can
describe the general communications,

the specific response, or the included
message body.

Figure 3.4 �
An HTTP Status-Line begins with an

HTTP version indicator and includes a
numerical status code and a textual

description of the response.

The blank line here marks the end of
message headers; the message body

follows. �

HTTP Messages 53

The remaining two items on the Status-Line are the Status-
Code and the Reason-Phrase. The Status-Code is a three-
digit number that indicates the result of the request. The
most common Status-Code is the 200 of the example. That
value indicates that the client’s request succeeded. The first
digit in the Status-Code identifies the type of result and
gives a high-level indication of whether the request suc-
ceeded; additional digits provide more details. Table 3.2 lists
the main categories of status code values, while section 3.3
discusses all the http status codes in detail.

Table 3.2 HTTP Status Code Categories

Status Code Meaning

100-199 Informational; the server received the request but a final

result is not yet available.

200-299 Success; the server was able to act on the request suc-

cessfully.

300-399 Redirection; the client should redirect the request to a

different server or resource.

400-499 Client error; the request contained an error that pre-

vented the server from acting on it successfully.

500-599 Server error; the server failed to act on a request even

though the request appears to be valid.

The Reason-Phrase that follows the Status-Code merely
helps humans interpret the Status-Code value. Servers in-
clude it as a convenience to humans, but clients pay no
attention to its contents (other than, if appropriate,
displaying it to a human user).

3.2 Header Fields

As we saw previously, http requests and responses may both
include one or more message headers. Message headers be-
gin with a field name and a colon (“:”). In some cases, the
field name alone is sufficient for the header. Most of the

54 HTTP Essentials

time, though, the header includes additional information. If
present, this information follows the colon.

A message header generally ends when the line ends, but if a
client needs to continue a header beyond a single line; it can
do so by beginning the continuation lines with one or more
spaces or horizontal tabs (ascii character 8). The request ex-
ample from the previous section includes a continuation line
for the User-Agent header; you can see it again highlighted
in the following.

GET / HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0
 (compatible; MSIE 5.5; Windows NT 5.0)
Host: www.ft.com
Connection: Keep-Alive

If a message header can contain of a series of field values,
each separated by a comma, for example, then it is acceptable
to include the same message header multiple times in the
same message. Such a message is treated identically to a
message that only includes the field once but with all field
values. The following text is an alternate, but completely
equivalent, version of the example request. Note that in this
case the Accept-Encoding header appears twice.

GET / HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip
Accept-Encoding: deflate
User-Agent: Mozilla/4.0
 (compatible; MSIE 5.5; Windows NT 5.0)
Host: www.ft.com
Connection: Keep-Alive

Before diving into the individual header fields, table 3.3 pro-
vides a summary list of all message headers that the http
specifications have so far defined. The table emphasizes that

Continuation of the
 User-Agent Header �

HTTP Messages 55

headers can apply to http in general, to a specific request or
response, or to the message body (entity) included in the re-
quest or response. Although the specifications don’t strictly
require it, http suggests that implementations include mes-
sage fields in that order: general headers, then request or re-
sponse headers, and finally entity headers.

Table 3.3 HTTP Header Fields

Header General Request Response Entity

Accept ●

Accept-Charset ●

Accept-Encoding ●

Accept-Language ●

Accept-Ranges ●

Age ●

Allow ●

Authentication-Info ●

Authorization ●

Cache-Control ●

Connection ●

Content-Encoding ●

Content-Language ●

Content-Length ●

Content-Location ●

Content-MD5 ●

Content-Range ●

Content-Type ●

Cookie ●

Cookie2 ●

Date ●

ETag ●

continues…

56 HTTP Essentials

Table 3.3 HTTP Header Fields (continued)

Header General Request Response Entity

Expect ●

Expires ●

From ●

Host ●

If-Match ●

If-Modified-Since ●

If-None-Match ●

If-Range ●

If-Unmodified-Since ●

Last-Modified ●

Location ●

Max-Forwards ●

Meter ● ●

Pragma ●

Proxy-Authenticate ●

Proxy-Authorization ●

Range ●

Referer ●

Retry-After ●

Server ●

Set-Cookie2 ●

TE ●

Trailer ●

Transfer-Encoding ●

Upgrade ●

User-Agent ●

Vary ●

Warning ●

WWW-Authenticate ●

HTTP Messages 57

Also, the specification notes that new entity headers may be
added to the protocol. Implementations that receive a mes-
sage header that they do not recognize should treat it as an
entity header.

3.2.1 Accept

The Accept header, which is a request header, lets a client
explicitly indicate what types of content it can accept in the
message body of the server’s response, as well as its relative
preference for each content type. Here is an example of an
Accept header that a client might include in its request.

Accept: text/plain; q=0.5, text/html,
 text/x-dvi; q=0.8, text/x-c

As you can see from the example, the Accept header can
include a list of multiple content types. Commas separate
individual types, and each type may include an optional
quality factor. The quality factor is a parameter of a type, and
a semi-colon separates it from the type. The previous exam-
ple indicates that the client can accept any of the following
four content types:

• text/plain; q=0.5

• text/html

• text/x-dvi; q=0.8

• text/x-c

Each individual content type consists of a type and a sub-
type, with a slash (/) separating the two. All of the content
types have the main type text, but they differ in the sub-
types. Clients can use the asterisk as a wildcard for a subtype
value or for both type and subtype. The content type text/*,
for example, would indicate that the client could accept any
text content, and the content type */* indicates that the cli-
ent can accept any content whatsoever.

Defining Content Types

The content types that HTTP

specifies in the Accept header

are defined by the Internet

Assigned Numbers Authority, or

IANA (www.iana.org), although

responsibility will eventually shift

to The Internet Corporation for

Assigned Names and Numbers

(www.icann.org). As of this writing,

IANA has registered over 350

different media types (their term

for content type) in a two-level

hierarchy. The top level indicates

the general format of the content

while the second level designates

the specific format. The top-level

types include text, multipart,

message, application, image,

audio, video, and model.

58 HTTP Essentials

The quality factor is a number between zero and one. (The
http specification limits it to three digits after the decimal
point.) If a content type doesn’t have an explicit quality fac-
tor, it is assumed to be one. The text/html and text/x-c
content types of the example, therefore, have an implied
quality factor of 1.0. If a server is capable of returning multi-
ple content types for a given request, it should pick the one
with the highest quality factor. Here’s the full interpretation
of our example: The client prefers the response to contain a
message body of type text/html or text/x-c. If the server
cannot comply with that preference, the client is willing to
accept a content type of text/x-dvi. And if that content
type isn’t available either, the client will accept, as a last re-
sort, text/plain content.

3.2.2 Accept-Charset

Clients can include an Accept-Charset header in their re-
quests to tell the server which character encodings they pre-
fer for the message body returned in the response. The
Accept-Charset header acts much like the basic Accept
header (as well as other headers in the Accept- family). Cli-
ents may include a list of different character sets, and they
can indicate a relative preference for different character sets
by including a quality factor. If the quality factor is absent,
the server assumes a value of 1.0.

The http protocol does treat the iso 8859-1 differently than
other character sets. Unless the client explicitly lists that
character set and explicitly assigns it a quality factor other
than 1.0, the server assumes that the client can accept iso
8859-1 and would prefer that with a quality factor of 1.0. This
behavior nearly ensures that iso 8859-1 is the default charac-
ter set for responses, as the client has to take extra steps to
suggest otherwise.

The message fragment that follows shows how a client may
choose to request a special character set. With such a header,
the client indicates that it prefers the Unicode character set,

HTTP Messages 59

but that it will accept any other (including iso 8859-1) with a
relative preference of 0.8.

Accept-Charset: unicode, *; q=0.8

The Internet Assigned Numbers Authority currently main-
tains the list of defined character sets. At the time of this
writing, that list included 235 different character sets.

As a final point, note that this header (and all the Accept-
headers) applies to the message body of the response. It does
not influence either the Status-Line or the http headers of
the response, all of which are always constructed from the
iso 8859-1 character set.

3.2.3 Accept-Encoding

The Accept-Encoding header gives clients another way to
express their preferences for the message body of the server’s
response. In addition to content type (the Accept header)
and character set (the Accept-Charset header), this header
lets clients suggest content encodings for the response. (The
TE header, described in section 3.2.44, lets clients express
preferences for transfer encodings.) The format of the header
is the same as the other Accept headers, a list of acceptable
encodings, each with an optional quality factor.

Accept-Encoding: compress, gzip; q=0.9,
 identity; q=0.8

With the preceding fragment, the client requests that the
response be encoded with the unix compress format, the
gnu gzip format if that is unavailable, and, if all else fails, the
identity encoding.

3.2.4 Accept-Language

The Accept-Language header is the last of the Accept- se-
ries that gives clients ways to express their preferences for the
response. (The Accept-Ranges field acts quite differently.)

60 HTTP Essentials

This header lets the client express a preference for the lan-
guage of the returned message.

To designate particular languages, clients can use a multi-
level hierarchy, with each level separated by dashes. In its
most common form, the first level is a two-letter iso 639
language abbreviation, and the second level, if present, is a
two-letter iso 3166 country code. For example, the code en
represents English, and the code en-us represents American
English. The Accept-Language header supports the same
quality factors as the other Accept- headers, so a client can
express preferences from among many languages. The
following text asks for uk English first and any other English
form if the first choice isn’t available.

Accept-Language: en-gb, en; q=0.8

Note that http servers do not automatically fall back to
higher levels in a language hierarchy. The following header,
for example, would be satisfied by only a us English re-
sponse. The server would not return a version in uk English,
even if one were available.

Accept-Language: en-us, *; q=0.0

3.2.5 Accept-Ranges

Unlike the other Accept- headers, the Accept-Ranges
header is a response header; as such it appears in servers’ re-
sponses rather than clients’ requests. The current http
specifications limit this header to two forms. The first form,
shown in the example header below, lets a server indicate
that it can accept range requests for the resource.

Accept-Ranges: bytes

As we’ll see in section 3.2.39, clients can issue requests for a
range of bytes of a resource rather than the entire resource.
This feature is particularly useful for downloading large files.
If a download fails before completion, the client can use a

HTTP Messages 61

range request to ask for only the missing bytes; it doesn’t
have to receive the entire file all over again.

If the server cannot accept range requests for a resource, it
may indicate that with the following header.

Accept-Ranges: none

Note that servers are not required to include an Accept-
Ranges header, regardless of whether they can accept range
requests. Clients are also free to issue range requests even if
they haven’t received an Accept-Ranges header. If the client
happens to send a range request to a server that cannot sup-
port it, the server simply returns the entire resource.

3.2.6 Age

The Age header is a response header that estimates the age of
the associated resource. Cache servers use this value to judge
whether a cached resource is still valid or whether it has ex-
pired and must be refreshed from the origin server. The Age
header’s value is the number of seconds that the sender esti-
mates have elapsed since the origin server generated or re-
validated the response.

The best way to understand how the Age header works is
with an example. Consider, therefore, the scenario that be-
gins with figure 3.5. That figure shows the initial request for
a resource, and in it the request traverses two intermediate
cache servers before reaching the origin server.

As the figure shows, the origin server includes two important
headers in its response. Those headers are the Date header,
which is the time that it generates the response, and a
Cache-Control header, which specifies the maximum age.
In the example the server indicates that the response can be
considered fresh (and, thus, cachable) for up to 600 seconds.

The scenario continues in figure 3.6, which takes place about
10 minutes later. In that figure, a client makes a request for
the same resource. The first cache server no longer has a

62 HTTP Essentials

copy in its cache, so it passes the request to the second cache.
That server returns the object with the message headers that
the figure includes in step 9.

At this point the first cache server has an important decision
to make: Is the object that the second cache returned still
valid? To answer that question, the first cache server calcu-
lates several values based on the parameters in table 3.4.

Client cache cache origin

4200 OK
Date: Thu, 11 Oct 2000...
Cache-Control:
 max-age=600

56

1 GET URI 2 GET URI 3 GET URI

200 OK
Date: Thu, 11 Oct 2000...
Cache-Control:
 max-age=600

200 OK
Date: Thu, 11 Oct 2000...
Cache-Control:
 max-age=600

Client cache cache origin

9200 OK
Date: Thu, 11 Oct 2000...
Cache-Control: max-age=600
Age: 599

7 GET URI 8 GET URI

Figure 3.5 �
An origin server may identify the

maximum age for cached copies of an
object it returns. In this example the

server limits caching to 10 minutes
(600 seconds).

Figure 3.6 �
Cache servers can indicate how old

they believe an object to be with the
Age header. This cache server

estimates the object to be 599
seconds old, one less that its

maximum life.

HTTP Messages 63

Table 3.4 Parameters for Cache Freshness Calculations

Parameter Interpretation

age_value The value in the Age header of the response (step 9);

599 in the example.

date_value The date assigned to the resource by the origin

server (step 4); 11 October 2000 … in the example.

now Current time at the first cache server.

request_time The time that the cache made the request (step 8).

response_time The time that the response (step 9) arrived.

Table 3.5 shows the steps in the calculation. Note that the
server actually bases its estimate of the resource’s age on two
independent sources. It looks at the Age header explicitly,
and it calculates the elapsed time from the resource’s original
Date header. (An accurate elapsed time calculation assumes
that the cache server and origin server have reasonable syn-
chronized time-of-day clocks.) The steps in table 3.5 ensure
that the cache server picks the most conservative of these
two values in its estimate, thus minimizing the chance that it
inappropriately returns a stale resource.

Table 3.5 Calculating the Freshness of a Cached Object

Step Procedure

1 Calculate the apparent age as the difference between

response_time and date_value.

2 Estimate the age of the resource as the maximum of the

apparent age from step 1 and the Age header in the response.

3 Add the difference between response_time and request_time

to the estimated age of step 2 (to conservatively account for

network transit delays).

4 Add the difference between now and response time (to account

for any delays within the cache server).

The cache server uses this result as the actual age of the re-
source. If the actual age exceeds the origin server’s max-age
value, then the cache server should not use the cached object

64 HTTP Essentials

for the response. Instead, it should reissue the request to the
origin server.

To continue the example, suppose that one second has
elapsed between the time that the first cache issued the re-
quest at step 8 and received the response of step 9. And fur-
ther suppose that an additional one second of delay occurred
after the response arrived but before the cache server could
process it. In such a case, the server will calculate the age of
the object as 601 seconds. That value exceeds the origin
server’s limit of 600 seconds, so the cache server should re-
ject the response. As a result, it may begin the process of fig-
ure 3.7, in which it reissues the request. (In the figure the first
cache server adds its own Cache-Control header to the re-
quest of step 10; by setting the max-age directive to 0 in a
response, the first cache server forces the second cache server
to revalidate its own cache entry with the origin server.)

The http specifications limit the Age header’s value to 2 147
483 648 (or 231) seconds. Whenever an age value exceeds that
limit in a server’s calculations, the server uses that maximum
value instead.

Client cache cache origin

200 OK
Date: Fri, 12 Oct 2000...
Cache-Control:
 max-age=600

GET URI
Cache-Control: max-age=0

GET URI

200 OK
Date: Fri, 12 Oct 2000...
Cache-Control:
 max-age=600

200 OK
Date: Fri, 12 Oct 2000...
Cache-Control:
 max-age=600

10
11

121314

Figure 3.7 �
When the Age of a cached object

exceeds its limit, cache servers must
consult the origin server for a new

copy or for revalidation of their
existing copy. This example, which is a

continuation of figure 3.6, has the
cache server request a new copy.

HTTP Messages 65

3.2.7 Allow

The Allow header identifies which http methods a particu-
lar resource supports. The header simply lists those methods
as its value. The text below, for example, indicates that a re-
source supports the GET, HEAD, and PUT methods.

Allow: GET, HEAD, PUT

This header is particular useful (indeed, it is mandatory)
when the server must return a 405 Method Not Allowed
status. Clients may also use the header when they send a re-
source to a server with the PUT method. In that case, the cli-
ent recommends to the server which methods it should allow
for the resource. The server, however, is not compelled to
honor that recommendation.

3.2.8 Authentication-Info

The Authentication-Info completes a three-message user
authentication exchange. It is a response header that servers
can include in a successful response, and it gives the client
additional information about the authentication exchange.
For details, see section 4.1.

3.2.9 Authorization

Clients use the Authorization header to identify and au-
thenticate themselves—or their users—to a server. The proc-
ess of securing http sessions is important enough (and
complicated enough) to merit its own chapter, so you’ll find
a thorough description of authorization in the next chapter.
Section 4.1, in particular, documents this specific header.

3.2.10 Cache-Control

The Cache-Control header is a master header for several
different directives that specify caching behavior. These di-
rectives, some of which have parameters associated with
them and some of which do not, are separated from each

66 HTTP Essentials

other by commas. The following fragment, for example,
specifies three cache control directives.

Cache-Control: max-age=3600, no-transform,
 no-cache="Accept-Ranges"

Like headers, individual directives may be used in requests
and responses. Table 3.6 lists http’s cache-control directives.

Table 3.6 Cache-Control Directives

Directive Parameters Request Response

max-age Required ● ●

max-stale Optional ●

min-fresh Required ●

must-revalidate None ●

no-cache Optional1 ● ●

no-store None ● ●

no-transform None ● ●

only-if-cached None ●

Private Optional ●

proxy-revalidate None ●

Public None ●

s-maxage Required ●

1Optional in responses; no parameters in requests

The rest of this subsection considers each directive in turn.

Cache-Control: max-age=3600

The max-age directive serves two major purposes. First,
when used by a server, it indicates the maximum time (in
seconds) that a cache should retain the resource in its cache
without revalidating it. In this role max-age is similar to the
Expires header. If both a max-age directive and an Expires
header are present in the same response, cache servers should
ignore the Expires header, even if it is more restrictive than
the max-age value. This rule allows origin servers to specify
different behaviors for http 1.0 caches than for http 1.1

HTTP Messages 67

caches, because the 1.0 cache servers will not understand
(and will, consequently, ignore) any max-age directive.

The max-age directive serves its second major purpose when
clients use it. When a client includes the directive in its re-
quest, the client indicates that it is willing to accept a cached
object no older than the indicated value. If a cache server has
an entry that’s older than the client’s requested age, it should
not return the cached entry, even if the origin server’s origi-
nal response indicates the entry is still valid. In an extreme
case, the client may specify a max-age of zero, in which case
cache servers should always pass the request to the origin
server for revalidation of locally cached entries.

Cache-Control: max-stale

With the max-stale directive, a client indicates that it is
willing to accept a response that includes a cached object,
even if the object has apparently expired. The client can op-
tionally limit how long past the apparent expiration time it is
prepared to accept responses. A directive of max-stale=600,
for example, indicates that the client is willing to accept re-
sponses up to 10 minutes (600 seconds) past their apparent
expiration time.

Cache-Control: min-fresh=60

When a client includes the min-fresh directive in its re-
quest, it tells cache servers to return a cached entry only if
the entry will remain fresh for at least the specified number
of seconds. If, for example, a cache contained an object that
would not expire for another 45 seconds, the cache server
could not return the local copy in response to the request
header example above. The example above requires that any
local copy has at least 60 seconds of life remaining, and 45
seconds doesn’t qualify.

Cache-Control: must-revalidate

The must-revalidate directive lets servers counteract the
use of max-stale by their clients. When a server includes

68 HTTP Essentials

must-revalidate in its response, cache servers should ig-
nore the max-stale directive in any future client requests.

Cache-Control: no-cache

The no-cache directive may appear in either requests or re-
sponses. In a request, this directive indicates that the client is
not willing to accept cached responses; any intermediate
cache servers must pass the request on to the origin server.
Note that this request differs slightly from a request that in-
cludes a max-age=0 directive. In the case of no-cache re-
quests, cache servers must always retrieve the response from
the origin server. With max-age=0, however, cache servers
need only revalidate their local cache with the origin server.
If the origin server indicates the cached entry is still valid,
the cache server may use it as a response.

When the origin server includes a no-cache directive in its
response, it tells cache servers not to use the response for
subsequent requests without revalidating it. This rule doesn’t
exactly prohibit cache servers from caching the response (de-
spite the directive’s name); it merely forces them to revalidate
a locally cached copy with each request.

If an origin server wants to restrict caching of only certain
header fields rather than the entire response, it can do that
by naming those headers in this directive. By including no-
cache="Accept-Ranges" in its response, for example, the
origin server tells cache servers that they can cache the re-
sponse, but they should not include the response’s Accept-
Ranges header when they answer subsequent requests with
the cached copy.

Cache-Control: no-store

The no-store directive identifies sensitive information, ei-
ther in a request (and its subsequent response) or in a re-
sponse alone. This directive tells cache servers not to store
the messages in any local storage, particularly if its contents
may be retained (e.g., on backup tapes) after the exchange.

HTTP Messages 69

Cache-Control: no-transform

The no-transform directive, which can appear in either a
request or a response, tells cache servers not to modify the
format of the response’s message body. Some cache servers
might otherwise do so, for example, to save cache space by
converting a high-resolution image to a lower resolution.

Cache-Control: only-if-cached

With the only-if-cached directive, a client asks cache serv-
ers to respond successfully only if they have the object in
their local cache. In particular, the client asks the cache not
to reload the response or revalidate it with the origin server.
This behavior may be useful in the environments with espe-
cially poor network connectivity where the client feels the
delay in reaching the origin server is unacceptable. If a cache
server cannot answer the request from its local cache, it
should return a 504 Gateway Timeout status.

Cache-Control: private

The private directive in a response indicates that the re-
sponse is intended strictly for a specific user. Cache servers
may retain a copy for responses to subsequent requests from
the same user, but they should not return that cached copy to
other users, even if those users issue the same request.

Cache-Control: proxy-revalidate

The proxy-revalidate directive tells any intermediate
cache servers that they should not return the response to
subsequent requests without revalidating it. Unlike the must-
revalidate directive, however, this directive does permit
clients themselves to cache the response and reuse the
cached entry without revalidation.

Cache-Control: public

The public directive is the opposite of the private direc-
tive. With it, a server explicitly indicates that its response
may be cached and returned to other users, even if the re-
sponse would otherwise be restricted to the original user or

70 HTTP Essentials

even non-cachable at all. If a client provides user authentica-
tion information, for example, cache servers should normally
treat any response as private to that user. But if the server is
merely responding with a 301 Moved Permanently status,
for example, it can use the public cache control directive to
tell cache servers to override their normal behavior and cache
the response.

Cache-Control: s-maxage=1800

The s-maxage directive acts much like the max-age directive
in responses, except that it applies only to caches serving
multiple users. For such cache servers, the s-maxage direc-
tive overrides both the max-age directive and the Expires
header. Cache servers responding to the same user multiple
times, however, can ignore this directive.

3.2.11 Connection

According to the http specifications, the Connection
header allows the message sender (the client in the case of
requests, the server for responses) to indicate to proxies any
other headers in the message that should not be forwarded
further. Consider the example of figure 3.8. In the figure, the
client issues a request that includes two message headers:
Upgrade and Connection. The proxy server, when it sees the
Connection header, removes the indicated Upgrade header
from the request before forwarding it. The Connection
header, therefore, identifies other http headers that should
be delivered only to the next hop.

Client Proxy Origin Server

1

GET URI
Upgrade: HTTP/2.0
Connection: Upgrade

2 GET URI

Figure 3.8 �
The Connection header identifies

other HTTP headers that proxy servers
should remove from messages that

they relay. In this example the proxy
does not include the Upgrade header

when it forwards the GET request.

HTTP Messages 71

Most hop-by-hop headers are explicitly identified as such in
the specifications. The Upgrade header of the figure, for ex-
ample, is defined to have significance only to the next hop.
Strictly speaking, therefore, the Connection header is not
necessary. As long as all the systems follow the same http
standards, they’ll already know which headers are hop-by-
hop. The Connection header’s real benefit, however, comes
into play if the http standards are ever extended. It allows
http to define new hop-by-hop headers, safe in the knowl-
edge that existing systems will treat them as hop-by-hop so
long as the Connection header identifies them.

The Connection header also has another use, and that is to
manage persistent connections. In fact, the Connection
header actually has two important uses related to persistent
connections. The first is rather simple; it provides a way for
either party to gracefully signal that they’re about to close a
connection. The second use supports persistence in a way
that is backwards compatible with http version 1.0.

As section 2.1.3 notes, with http version 1.1, persistent con-
nections are the default behavior. When a client opens a
connection for a request, it expects the connection to remain
open for additional requests to the same server. But what if
the server doesn’t want to keep the connection open? It
could, of course, just close the connection after it sends its
response. That behavior is legal, and the client will eventually
recognize what has happened and act appropriately. The
problem, though, is that the client doesn’t receive any warn-
ing. It may be preparing to send a new request just when the
server effectively yanks the rug out from underneath it.
When that happens, it may take the client several seconds
(possibly much longer) to recognize what has happened and
recover. A more polite server will include the following
header in its initial response.

72 HTTP Essentials

Connection: close

This header tells the client that the server is planning to
close the connection after completing its response. The client
should prepare accordingly. Clients can also include a Con-
nection: close header in their requests. In such a case the
client is letting the server know that it does not plan to use a
persistent connection and will, instead, close the current
connection as soon as it receives its response. Note that Con-
nection: close is not restricted to the first request or re-
sponse in a connection. Either party can use it even after a
connection has been established and used for previous ex-
changes. Once this header appears, though, future exchanges
on the connection will not take place.

The second major use of the Connection header is support-
ing older systems. Because persistence was not the default
behavior before http 1.1, earlier implementations used ex-
plicit headers to request persistence connections. Those
headers include a Connection: Keep-Alive and, optionally,
the Keep-Alive header itself. (Because it is no longer
needed, http 1.1 does not define a Keep-Alive header.)

GET / HTTP/1.1
Keep-Alive: timeout=5
Connection: Keep-Alive

The server agrees to use persistent connections by respond-
ing with its own Connection and Keep-Alive headers.

HTTP/1.1 200 OK
Keep-Alive: timeout=5, max=120
Connection: Keep-Alive
Content-Type: text/html

<html>...

As a practical matter, the presence of the Connection:
Keep-Alive header indicates http persistence, not the
Keep-Alive header itself.

HTTP Messages 73

3.2.12 Content-Encoding

The Content-Encoding header identifies any special encod-
ings that are an inherent part of the resource contained in
the message body. Together with the Content-Type header,
this header specifies the format of the resource. If, for exam-
ple, a client requested the file manual.ps.gz, it might receive
the file in a response with the following message headers.
The Content-Type header identifies the ultimate object as a
PostScript file, but the Content-Encoding header notes that
the file has been compressed with the gzip program.

HTTP/1.1 200 OK
Content-Type: application/postscript
Content-Encoding: gzip

The http specifications recognize four different content
encodings, all of which are listed in table 3.7.

Table 3.7 HTTP Content-Encodings

Identifier Meaning

compress The encoding format produced by the UNIX program

compress. (Older implementations may use x-compress.)

deflate The zlib encoding format defined in RFC 1950.

gzip The encoding format produced by the gzip program, as

described in RFC 1952. (Older implementations may use

x-gzip.)

identity The absence of any special encoding format.

Note that Content-Encoding is similar to, but slightly dif-
ferent from, Transfer-Encoding. Content-Encoding is an
intrinsic characteristic of the resource, while Transfer-
Encoding is applied externally by the http server just for
the purpose of transferring the resource. As a practical mat-
ter, though, receiving systems treat both encodings the same;
they both must be reversed to uncover the actual resource.
The trick is ensuring that the reverse transformations occur
in the correct order. In the following fragment, for example,

74 HTTP Essentials

the resource was first compressed using gzip; the result was
then further encoded using compress, and, finally, the
“chunked” transfer encoding was applied. (The example is,
admittedly, rather artificial.) The receiving system should
undo those encodings in the reverse order: first chunked,
then compress, and finally gzip.

Content-Encoding: gzip, compress
Transfer-Encoding: chunked

3.2.13 Content-Language

The Content-Language header identifies the natural lan-
guage of the included resource. The format is the same as in
the Accept-Language header described in section 3.2.4. Note
that the http specification intends this field specifically for
human languages such as English. It should not be used to
indicate computer languages like C or Java.

3.2.14 Content-Length

The Content-Length header gives the size of the message
body in bytes or, in the case of a response to a HEAD method,
the size of the message body if it were to be included. The
Content-Length header is actually one of several different
ways that the recipient may determine the size of a message.
A recipient may also determine message length from the
transfer encoding or content type format, and it can infer the
end of a message when the underlying tcp connection
closes.

Table 3.8 lists the rules that a recipient uses to determine the
end of an http message, in order of priority. As the rules
indicate, a sender should not include the Content-Length
header if the message is a response that does not permit mes-
sage bodies, or if the message body is encoded using the
chunked format.

HTTP Messages 75

Table 3.8 Rules for Determining the End of an HTTP Message

Priority Rule

1 If the response has a status code that does not permit mes-

sage bodies (e.g. ,1xx, 204, and 304 status codes) then the

message ends at the first empty line after the header fields.

Any further message content is ignored.

2 If the Transfer-Encoding for the message is chunked,

then the message length is determined by the chunked for-

mat. (See section 3.2.46.)

3 If the Content-Length header is present, then it provides

the length of the message.

4 If the message has a Content-Type of multi-
part/byteranges, then the media type format defines

the end of the message.

5 If the server closes the connection, the last byte sent is the

end of the message.

3.2.15 Content-Location

The Content-Location header provides the Uniform Re-
source Identifier corresponding to the message body. A
server may choose to use this header if the resource it returns
depends on more than the request’s uri. For example, a
server may have different language translations of a resource
available, and it may decide to return one particular transla-
tion based on the Accept-Language header in the request.
In such a case, the Content-Location header may identify
the translated object instead of the original requested object.

In practice, the Content-Location header is rarely used. It
should not be confused with the Location header (see sec-
tion 3.2.33.), which does appear quite frequently in Web
transactions. While the Content-Location header specifies
the uri of the resource being returned in the message body,
the Location header identifies an alternate uri for the re-
quested resource; the resource itself is not part of the mes-
sage body when the Location header appears.

76 HTTP Essentials

3.2.16 Content-MD5

The Content-MD5 header provides assurance that a message
body reaches its destination without modification. The value
of this header is the result of running the Message Digest 5
(md5) algorithm with the message body (before any transfer
encoding) as input. The md5 algorithm, which chapter 4 dis-
cusses in more depth, resembles a checksum, but it uses
cryptographic principles to make the result relatively im-
mune to undetectable errors.

Here’s how a system calculates the value for this header be-
ginning with the following html page as the message body.

<HTML>
 <BODY>
 <P>Hello World!</P>
 </BODY>
</HTML>

Running the md5 algorithm on the html page results in the
following 128-bit binary value. The fragment shows the result
as 16 bytes, each represented in hexadecimal notation.

B2 B3 59 59 1E 96 1C 6B 0F 46 8F E5 36 BC D9 20

Because the md5 algorithm creates a binary value, and http
headers must be text, the Content-MD5 header uses the
base64 algorithm to convert binary to ascii. The result of the
base64 encoding is as follows.

Content-MD5: srNZWR6WHGsPRo/lNrzZIA==

To see the full context for the Content-MD5 header, here is a
full response from the server, including both the http head-
ers and the message body.

HTTP/1.1 200 OK
Date: Sun, 08 Oct 2000 18:46:12 GMT
Server: Apache/1.3.6 (Unix)
Content-Type: text/html
Content-Length: 66
Content-MD5: srNZWR6WHGsPRo/lNrzZIA==

<HTML>

The MD5 Algorithm

RFC 1321documents the MD5

algorithm in full. It includes a

complete implementation of the

algorithm in C-Language source

code.

Base64 Encoding

Base64 encoding was originally

developed as a way to send binary

objects using email. It is defined in

RFC 2045, one of the series of

specifications for Multipurpose

Internet Mail Extensions (MIME).

HTTP Messages 77

 <BODY>
 <P>Hello World!</P>
 </BODY>
</HTML>

The Content-MD5 header provides end-to-end protection of
the content so that recipients can detect problems introduced
by the network or by intervening proxy servers. To ensure
this behavior the http specification expressly prohibits
intermediate servers from creating or modifying the
Content-MD5 header. Only the origin server (for responses)
or the client (for requests) can create this header.

As one final note, the Content-md5 header can identify acci-
dental changes to the message content, but it cannot detect
malicious attacks. An attacker that modifies http content
merely needs to adjust the Content-md5 header value to
match. Chapter 4 discusses more secure ways to protect
http content.

3.2.17 Content-Range

When a server includes only part of a resource in its message
body, the Content-Range header specifies which part. This
feature is particularly useful for resuming a file download
after that download aborted. To see this process in action,
consider figure 3.9. In that figure, the scenario begins when

Client Server

2

1 GET URI

200 OK
Content-Length: 1234
Accept-Ranges: bytes

Transfer
aborted after

500 bytes

� Figure 3.9
When problems occur, a client may
not receive all of a requested
object. In this example the client
requests an object that consists of
1234 total bytes, but the transfer
aborts after only 500 bytes actually
reach the client.

78 HTTP Essentials

the client requests an object. As the figure shows, the server
begins returning the resource, which consists of 1234 bytes of
information. The transfer aborts, however, after only 500
bytes of the object successfully make it to the client.

In its original response, however, the server indicates that it
can accept range requests for the object. The Accept-Ranges
header conveys that information. Consequently, when the
client realizes that the transfer has aborted, it does not have
to request the entire object again. Instead, as figure 3.10
shows, it includes a Range header in its re-issued request.

With the request of step 3, the client asks only for bytes 500
through the end of the resource. The server obliges in step 4.
Here is where the Content-Range header appears. The first
part of the header’s value identifies the unit. Currently http
supports only bytes. The next part lists the range of bytes
included. In this example, the server’s response begins with
byte 500 of the object and ends with byte 1233. The last part
of the header provides the total size of the object, 1234 bytes
in the example. As these examples indicate, http numbers
bytes beginning at 0; the first byte of a resource is byte 0.

3.2.18 Content-Type

The Content-Type header identifies the type of object the
message body contains. (In a response to the HEAD method,

Client Server

4

3
GET URI
Range: bytes=500-

206 Partial Content
Content-Length: 734
Content-Range: bytes 500-1233/1234

Figure 3.10 �
With the Range header, a client can

ask for only part of an object. This
example, which continues figure 3.9,

shows how the client asks for the rest
of the object.

HTTP Messages 79

the Content-Type identifies the type of object that would be
in the message body, if one were present.) Values for the
Content-Type header follow the same type/subtype format
we first saw with the Accept header. In addition, many of
the defined content types allow for additional parameters
that provide further information. For example, the fragment
below indicates that the resource is a text file and that it uses
the iso 8859-4 character set.

Content-Type: text/plain; Charset=ISO-8859-4

3.2.19 Cookie

If a client wishes to support http state management (see
section 2.5), it provides any cookies it has received from a
server in subsequent requests to that server. Those cookies
are carried in a Cookie header, much like the following. This
example shows only a single cookie, but a client may con-
ceivably have multiple cookies from the server, in which case
it may combine all of them in one header or use separate
headers.

Cookie: $Version="1"; NAME="VALUE";
 $Path="/shopping"; $Domain="www.shop.com";
 $Port="80"

Each cookie begins by identifying the version of http state
management the client is using; the current version is 1, as in
the example. The version is always followed by the name of
the cookie and its value. These are set by the server in its
Set-Cookie or Set-Cookie2 header, but note that the server
cannot use a cookie name of $Version. Otherwise it would
be impossible to recognize the cookie in a header. The http
specification, in fact, prohibits cookie names from starting
with the $ character.

The additional fields that follow the cookie name and value
are optional. If present, they identify the path, domain, and
port of the cookie.

80 HTTP Essentials

3.2.20 Cookie2

Despite the similarity in names, the relationship between the
Cookie2 and Cookie headers is not at all like that between
the Set-Cookie2 and Set-Cookie headers. While Set-
Cookie2 is just a slightly modified version of Set-Cookie,
Cookie2 and Cookie are different headers with completely
different uses.

The Cookie2 header merely indicates which version of the
state management specification the client supports. The cur-
rent version is 1, so the header will look like the following.

Cookie2: 1

A client should include this header whenever it sends a
Cookie header. That will let the server know it can use Set-
Cookie2 headers as well as Set-Cookie headers in
subsequent responses. Clients that don’t fully support Set-
Cookie2 will omit the Cookie2 header, even though they
might include a Cookie header. Servers will know not to
send those clients Set-Cookie2 responses.

3.2.21 Date

The Date header indicates the time that the system sending
a message originally generated that message. Note that Date
values apply to the message, not necessarily to the resource
identified or contained in the message. The Last-Modified
header (see section 3.2.32) provides the time of the resource.

With version 1.1 of http, systems are required to use the
following format for date values that they generate. This for-
mat is defined in rfc 1123.

Date: Sun, 06 Nov 1994 08:49:37 GMT

To remain compatible with earlier implementations, http 1.1
systems should accept dates in two other formats. The first
format, shown in the fragment below, is defined in rfc 850.
Note that it provides only for two-digit years, and the day of
the week is of variable length.

HTTP Messages 81

Date: Sunday, 06-Nov-94 08:49:37 GMT

Another common format in earlier http implementations is
the following. This is the output of the function asctime(),
part of the standard C-Language library.

Date: Sun Nov 6 08:49:47 1994

The http specifications require origin servers to include a
Date header in their responses, unless one of three
conditions applies. If the response status is a 100 Continue
or 101 Switching Protocols, the server may omit the
Date header. Also, if the response status indicates a server
error (e.g., 500 Internal Server Error) and the server
cannot conveniently generate a valid date, it can omit the
Date header. And finally, servers without a reasonably accu-
rate clock should not include a Date header. This last condi-
tion doesn’t often apply to traditional Web servers running
on standard computing platforms, but it may be the case for
special-purpose devices that include embedded Web server
functionality.

3.2.22 ETag

The ETag header gives servers a more reliable way to identify
resources, especially to improve caching performance. With-
out the ETag header, it can be difficult for caches (whether in
proxy servers or in the client) to unambiguously identify re-
quested resources. Consider, for example, the url
http://www.yahoo.com/. The actual resource returned may
vary based not just on time, but also on geographic location.
Users in the United Kingdom may see a different home page
than users in France, as figures 3.11 and 3.12 demonstrate.

This problem can seriously complicate the life of Web
caches, especially if all they have to identify a resource is its
url. The ETag header solves the problem by providing a
simple and unambiguous way to identify resources. Origin
servers can assign an ETag, which is short for “entity tag,”
value to resources as they return them.

http://www.yahoo.com/

82 HTTP Essentials

An ETag value can contain arbitrary characters within double
quotation marks; the actual value is completely up to the ori-
gin server. The following fragment is how a server might
assign an ETag value in its response.

ETag: "xyzzy"

ETag values also come in two varieties: strong and weak. Re-
sources with the same strong ETag value are identical, byte
for byte. Resources with the same weak ETag value, however,
are merely equivalent. Weak ETag values begin with the w/
prefix, as the text below illustrates.

ETag: w/"xyzzy"

Caches normally use ETag values with If-Match and If-
None-Match headers. Sections 3.2.27 and 3.2.29 document
their operation.

Figure 3.11 �
Web servers can tailor the contents of

a Web page to suit specific users. In
this example the user is located in the
United Kingdom, so the server returns

content especially for that location.

HTTP Messages 83

3.2.23 Expect

With the Expect header, a client tells a server that it expects
a particular behavior. The http specifications define Expect
as an extensible header, but the only currently defined use for
it is if a client expects a server to send a 100 Continue
status. In that case the client includes the following header.
(For more details on the 100 Continue status, see section
3.3.1.)

Expect: 100-continue

If a server receives an Expect header with which it cannot
comply, it responds with a 417 Expectation Failed status.

When the client is communicating through a series of proxy
servers, each proxy in the chain is expected to respond to the

� Figure 3.12
A user in France who requests the
same URI may get entirely different
content, making it difficult for cache
servers to tell if a locally cached copy
is appropriate for a given request.

84 HTTP Essentials

Expect. In addition, the proxy should pass the Expect
header upstream to the next server without modification.

3.2.24 Expires

The Expires header indicates a time, beyond which a re-
source may no longer be valid. Until then, caches may keep a
copy of the response and return that copy in response to sub-
sequent requests. The header’s value is a date, as in the text
below, but some older implementations may use invalid for-
mats, particularly Expires: 0, to indicate that a resource
should not be cached at all.

Expires: Thu, 01 Dec 1994 16:00:00 GMT

Officially, if a server doesn’t wish a resource to be cached, it
sets the Expires header value to be the same as the Date
header value. In practice, however, most servers simply set
the Expires header to some time in the past. The http
specifications also prohibit a server from setting the Expires
header value to be more than one year in the future.

Recall from section 3.2.10 that a Cache-Control max-age
directive overrides the Expires header. Because http intro-
duced Cache-Control with version 1.1, and many earlier
implementations supported Expires, the combination of
both headers lets servers specify different expiration times for
version 1.1 and pre-version 1.1 caches. A server might do that
if there are additional 1.1 features that allow it to safely ex-
tend the age of the resource.

3.2.25 From

Clients can use the From header to identify the human user
for a request. The value of this header, as the example below
shows, is an email address. Because unsolicited email has
made many users very wary of revealing their email ad-
dresses, most http clients no longer include this field in
their requests.

From: stephen.thomas@waterscreek.com

HTTP Messages 85

3.2.26 Host

With version 1.1, http introduced the Host header specifi-
cally to help Web hosting providers. Without the Host
header, such providers are often forced use their hosting re-
sources inefficiently. The problem, as we saw in section 2.4.1,
is that providers like to run multiple companies’ Web sites on
the same physical server system. But if, for example, a single
physical server supports both www.companya.com and
www.companyb.com, how does that server respond to the
following request? Is the client asking for the home page of
company a or company b?

GET / HTTP/1.1
Accept: */*
User-Agent: Mozilla/4.0
 (compatible; MSIE 5.5; Windows NT 5.0)

Without the Host header, providers are forced to dedicate
different ip addresses for each client. (All standard Web
servers allow the host system to have multiple, simultaneous
ip addresses.) The server can then determine the response
based on the ip address to which the client sent the request.
Unfortunately, ip addresses are a scarce commodity, and pro-
viders would rather not use them unnecessarily. The Host
header comes to their rescue by allowing clients to explicitly
indicate the dns name for the resource they’re requesting.
With a Host header, the preceding request might instead
look like the following. This time the client specifically iden-
tifies the host as company a.

GET / HTTP/1.1
Accept: */*
User-Agent: Mozilla/4.0
 (compatible; MSIE 5.5; Windows NT 5.0)
Host: www.companyA.com

Although it’s rarely used in practice, http 1.1 does allow a
client to specify a full uri in its request. In such cases the
server should ignore the value of the Host header if one is

86 HTTP Essentials

present. For example, a server would treat the following re-
quest as a request for Company b’s home page, even though
the Host header indicates something else.

GET http://www.companyB.com/ HTTP/1.1
Accept: */*
User-Agent: Mozilla/4.0
 (compatible; MSIE 5.5; Windows NT 5.0)
Host: www.companyA.com

3.2.27 If-Match

The If-Match header makes a client’s request conditional;
the server accepts the request only if certain conditions are
true. Specifically, the If-Match header lists one or more en-
tity tags, and the server should process the request only if the
identified resource matches one of the entity tags. The server
must not use weak ETag values (see section 3.2.22.) for its
comparison.

The If-Match header can be a significant help when clients
are editing resources stored on a server. In that type of envi-
ronment, If-Match can prevent conflicts that may occur
when multiple users edit the same resource. For example,
look at the scenario that starts with figure 3.13. In that figure

Client A

Server

2

1 GET URI

200 OK
ETag: "1234"

Client B

3 GET URI

4
200 OK
ETag: "1234"

Figure 3.13 �
Two different clients request the same

object. Since the object is identical in
both responses, the server assigns it

the same ETag value.

HTTP Messages 87

two different clients request a resource. In both cases the
server returns the resource with an ETag header of 1234.

The example continues with figure 3.14. There the first client
finishes editing the resource and returns the modified object
to the server with a PUT method. The If-Match header tells
the server to process the request only if the resource’s entity
tag is still 1234. As far as the server knows, the resource hasn’t
changed, so the server accepts the request. At this point,
however, the resource has changed. It takes the new value
supplied by the first client. Because of this change, the server
must assign the resource a new entity tag.

Sometime later, the second client finishes its modifications
and attempts to return the new object to the server. That
request is step 8 and, as the figure shows, it also includes an
If-Match header. In this case, though, the 1234 doesn’t match
the resource’s new entity tag. The server rejects the request
with a 412 Precondition Failed status.

Clients can also use an If-Match header with an asterisk for
the entity tag, as in the example that follows. In this case the
client asks the server to carry out the request only if the re-
source already exists, regardless of its current entity tag. A

Server

6

5
PUT URI
If-Match: "1234"

200 OK

Client B

8

9

412 Precondition Failed

PUT URI
If-Match: "1234"

Client A

7

Server updates
ETag Value

� Figure 3.14
Client A returns a modified version of
the object in step 5. Because the
object has now changed, the server
gives it a new ETag value. Later, when
client B tries to update the original
object (with the old ETag value), the
server recognizes the conflict and
refuses the request.

88 HTTP Essentials

client might use this option if it wanted to prevent its PUT
request from creating a brand new resource.

If-Match: *

3.2.28 If-Modified-Since

The If-Modified-Since header lets clients and proxy serv-
ers make more efficient use of their caches. It asks a server to
respond to a request only if the resource has changed since
the specified date. Figure 3.15 shows how http systems can
use this header. The figure shows a standard GET request that
passes through a proxy server. A key element of the server’s
response is the Last-Modified header, with which the server
identifies the last time the requested resource changed.

The example continues in figure 3.16. Some time later the
client issues another request for the same resource. The proxy
has a copy of the earlier response in its local cache, so it in-
serts the If-Modified-Since header into the request before
passing it to the origin server. The value of that header is the
same as the server’s original Last-Modified time.

In the example, the resource has not changed. Instead of re-
turning the entire object, the origin server responds with a
304 Not Modified status. This status tells the proxy server
that its cached copy of the object is still valid, so it returns
that copy to the client. If the object is a large one, this step

Client Proxy Origin Server

2 GET URI

34
200 OK
Last-Modified: Thu, 11 Oct 2000...

1 GET URI

200 OK
Last-Modified: Thu, 11 Oct 2000...

Figure 3.15 �
When a server returns an object, it

indicates the last time that the object
changed by specifying the Last-

Modified header value.

HTTP Messages 89

may have saved considerable network bandwidth and delay
because the object doesn’t have to travel from the origin
server to the proxy a second time.

Clients can use the If-Modified-Since header not only for
standard requests, but also for partial requests with the Range
header. In such cases, the If-Modified-Since value applies
to the object as a whole, not just to the requested part of the
object.

Servers receiving requests with If-Modified-Since headers
should honor that header only if they would otherwise return
a 200 OK status. Also, if the date in an If-Modified-Since
header is invalid, either because it is in the wrong format or
because it is later than the server’s current time, then the
server should ignore the header and return the resource.

Clients that use the If-Modified-Since header should take
into account two problems with many deployed servers.
First, some servers compare the If-Modified-Since value
for an exact match with the resource’s Last-Modified value.
Even if the If-Modified-Since value is later than the
Last-Modified value, those servers will return the full en-
tity. Clients that want to accommodate this behavior should
use only values from Last-Modified headers. The second
issue is one of clock synchronization. Clients should be
aware that server clocks may not always be correct; they are

Client Proxy Origin Server

2
GET URI
If-Modified: Thu, 11 Oct 2000...

34 304 Not Modified

1 GET URI

200 OK
Last-Modified: Thu, 11 Oct 2000...

� Figure 3.16
A proxy server can use the If-Modified
header to ask for an object only if it
has changed. In this example the
object has not changed, so the server
returns a 304 status.

90 HTTP Essentials

subject both to inaccuracies in timing and to human errors
(e.g., in setting the wrong time zone). Again, the best way
for clients to accommodate such problems is to use only val-
ues from the servers’ Last-Modified headers.

3.2.29 If-None-Match

The If-None-Match header is the complement of the If-
Match header; it has the exact opposite effect. When a client
includes If-None-Match, it asks a server to complete a re-
quest only if the indicated resource has an entity tag that
differs from that in the header. Servers can consider strong
ETag values (see section 3.2.22.) for all requests and weak
ETag values only with GET or HEAD methods.

For GET and HEAD requests, the If-None-Match header works
like the If-Modified-Since. If the server finds that the en-
tity tag for the resource is the same as one listed in the If-
None-Match header, the server returns a 304 Not Modified
status. If the client includes both an If-None-Match and an
If-Modified-Since header in its request, the If-

Modified-Since header takes precedence. If the server be-
lieves the resource is more recent than the If-Modified-
Since time, it returns the complete resource regardless of the
value of the If-None-Match header.

In all cases, if the request would result in any status other
than 2xx or 304 were the If-None-Match header not pre-
sent, the server should return that status and ignore the If-
None-Match.

Just as with the If-Match header, If-None-Match lets a cli-
ent use the asterisk to represent any entity tag value. This
use, which the example below illustrates, asks the server to
accept the request only if the resource does not currently ex-
ist. A client might use this header value on a PUT request if it
wanted to be sure and not overwrite an existing object.

If-None-Match: *

HTTP Messages 91

3.2.30 If-Range

The If-Range header improves performance for clients or
proxies that have part of an object in their local cache. With-
out If-Range, the client may require two separate exchanges
to get a new copy of the object once that object has been
modified. Figure 3.17 shows the message exchanges when If-
Range isn’t used.

In step 1, the client asks for bytes 500 through 1000 of the
resource, but only if the entity tag for that resource is still
"1234". When the server recognizes that the resource has
changed, it responds with a 412 Precondition Failed
status. The client then has to issue the request again, this
time asking for the new object.

The If-Range header lets a client combine both of these
requests into one, as figure 3.18 illustrates. In its request, the
client includes an If-Range header and a Range header. To-
gether, those two tell the server to return only the requested
range if the resource’s entity tag is still "1234"; otherwise,
the server should return the entire object. In the example, the
object has changed, so the server returns the full object with
a 200 OK response.

For those servers that don’t use entity tags, the If-Range
header has an alternative format. Instead of an entity tag for

Client Server

2

1
GET URI
If-Match: "1234"
Range: bytes=500-1000

412 Precondition Failed

3 GET URI

4200 OK
ETag: "5678"

� Figure 3.17
Without the If-Range header, a client
may have to make two requests when
it has part of an object but the part is
no longer valid. The first request tells
the client that its copy is invalid, and
the second request actually retrieves
the entire new object.

92 HTTP Essentials

the If-Range value, the client may use a date. In those cases
the client asks the server to return the partial range if the
resource has not been modified since the specified date. Oth-
erwise the server returns the full object. Figure 3.19 shows
how a client might use this option. In this figure, unlike the
previous two, the resource hasn’t changed, so the server re-
turns only the requested range.

The If-Range header doesn’t use any special formatting to
distinguish If-Range entity tags for If-Range dates. It is the
server’s responsibility to interpret the header correctly. Be-
cause entity tags are enclosed in double quotation marks and
dates are not, servers can easily make that determination.

3.2.31 If-Unmodified-Since

As you might expect, the If-Unmodified-Since header is
the opposite of If-Modified-Since. If a client includes If-
Unmodified-Since in its request, it asks the server to accept
the request only if the referenced resource has not changed

Client Server

1
GET URI
If-Range: Tue, 17 Oct...
Range: bytes=500-1000

2
206 Partial Content
Last-Modified: Tue, 17 Oct ...
Content-Range: bytes 500-1000/2500

Client Server

1
GET URI
If-Range: "1234"
Range: bytes=500-1000

2200 OK
ETag: "5678"

Figure 3.19 �
A client can indicate a date as well as

an ETag value with the If-Range
header. In both cases the server

returns a partial object only if the
client’s existing part is still valid.

Figure 3.18 �
The If-Range header lets a client ask
for either part of an object or, if the

part is no longer valid, the entire
object, all in a single request.

HTTP Messages 93

since the indicated date. A client might use this header in
PUT requests if it wanted to ensure that no other party had
modified a resource while the client was editing it.

As with the other If- headers, servers should consider the
If-Unmodified-Since header only if the request would oth-
erwise return a 200 OK status. When that is the case, but the
If-Unmodified-Since condition does not hold, a server
returns a 412 Precondition Failed status.

3.2.32 Last-Modified

The Last-Modified header provides the date the origin
server believes the indicated resource was last modified. This
header, an example of which appears below, is primarily of
benefit to proxies and clients that cache objects, as it allows
them to date an object in their local cache. When the system
needs to get a new copy of an object, it can use this date,
along with the If-Modified-Since header, to prevent the
server from resending the entire resource if it has not
changed. Figures 3.15 and 3.16 show this operation.

Last-Modified: Tue, 15 Nov 1994 12:45:26 GMT

3.2.33 Location

Servers use the Location header to redirect clients to a new
uri for a resource. The most common use of Location is in
responses with 3xx status codes, but a server might also use
Location in a 201 Created response. In that case, the
header would tell a client where it could retrieve a copy of a
resource that it just sent to the server using a PUT method.

Figure 3.20 shows the typical operation of a Location
header. In step 1, the client sends a standard GET request to
server a. That server doesn’t have the resource, but it does
know where the resource may be found. In its reply, there-
fore, server a returns a status code of 302 Found, and it in-
cludes a Location header. The value of the Location header
is a full uri for the resource. The client uses this information

94 HTTP Essentials

to reissue the request to the indicated server, which, in step 4,
finally returns the resource.

The Location header is quite different from the Content-
Location header, despite the similarity in their names.
When a server includes a Content-Location header, it tells
the client where a resource came from; a Location header, in
contrast, tells the client where a resource is now located.

3.2.34 Max-Forwards

The Max-Forwards header, along with the OPTIONS and
TRACE methods, helps clients fix problems that prevent them
from getting any response from a server. There are two
classes of problems that can be particularly difficult to diag-
nose without the Max-Forwards header—failed intermediar-
ies and request looping.

Figure 3.21 shows the situation when an intermediary fails. In
the figure, proxy server b receives the request in step 2, but it
fails to forward the request on to the origin server. The situa-
tion is particularly vexing for the client. The client is com-
municating directly with proxy a and can probably verify
that proxy a is working fine. The client may even be able to
verify that the origin server is working correctly (by calling

Server A

4

1 GET URI

200 OK Server B

Client

2
302 Found
Location: http://www.serverB.com/page.html

3

GET /page.html

Figure 3.20 �
The Location header gives the client a

new Uniform Resource Identifier for
an object. If appropriate, the client

may request the object from that
location. In this example server A tells

the client to retrieve the object from
server B.

HTTP Messages 95

the server’s technical support, for example). Somehow the
request doesn’t make it all the way to the origin server,
though.

Request looping also prevents the client from receiving any
response, but it’s even more harmful to the network as a
whole. When looping occurs, requests circulate among proxy
servers indefinitely, tying up network and server resources.
Figure 3.22 illustrates this problem. Instead of reaching the
origin server, the client’s request continuously passes among
the three proxy servers. This condition is not necessarily the

Client Proxy A Proxy B Origin Server

1 GET URI 2 GET URI

Proxy C

3

GET URI4

GET URI

5 GET URI

6

7

8

...

Client Proxy Server A Proxy Server B Origin
Server

1 GET URI 2 GET URI

Proxy B fails
to forward

request

� Figure 3.22
Loops can develop when proxies
circulate a request among
themselves without ever delivering
it to the origin server. This is
another error that prevents a client
from receiving any response.

� Figure 3.21
If a proxy server fails to forward a
request, the client will never receive
any response.

96 HTTP Essentials

fault of any particular proxy. Proxy a, for example, may le-
gitimately believe the next best hop for the request is proxy
b, who may equally legitimately believe it should be passed to
proxy c, who may, in turn, legitimately forward the request to
proxy a again, thus creating the cycle. (If proxy a is inserting
Via headers correctly, however, it should be able to detect the
problem.)

In the cases of both figure 3.21 and figure 3.22, the client
never receives a response to its request, and as long as the
failure mode persists, the client will never get a response,
even by repeating the request. When that happens, a client
can call on the TRACE method, along with the Max-Forwards
and Via headers.

The Max-Forwards header limits the number of intermedi-
ate systems through which a request may pass. The client (or
even an intermediate proxy server) sets it to an initial value,
and subsequent proxy servers that receive the request decre-
ment it before passing it on. If an intermediate server re-
ceives a request with Max-Forwards set to zero, it must not
forward the request any further. Instead, it responds as if it
were the origin server.

Here’s how the client could detect the request loop of figure
3.22. It starts by sending a TRACE method with Max-

Forwards to zero. As figure 3.23 shows, the first proxy server
detects the Max-Forwards value and, instead of forwarding
the request, responds with a 200 OK.

When the client gets a response from proxy a, it sends an-
other TRACE, this time with Max-Forwards set to 1. Figure
3.24 documents what happens this time. Proxy a accepts the
request, decrements the Max-Forwards header value, and
sends it on to proxy b. As the figure indicates, proxy a also
inserts its identity in the request with the Via header. Sec-
tion 3.2.50 has a detailed description of the Via header; for
our purposes now it’s important only to note that every in-
termediate proxy in a request or response inserts its own

HTTP Messages 97

identity in each message. When, in step 4, the message
reaches proxy b, the Max-Forwards header prevents proxy b
from sending it any further. Instead, proxy b returns its own
response to the client.

Client Proxy A Proxy B Origin
Server

3

TRACE
Max-Forwards: 1

Proxy C

6

4

TRACE
Max-Forwards: 0
Via: 1.1 proxyA

5

200 OK
Content-Type: message/http

TRACE http://server/ HTTP/1.1
Max-Forwards: 0
Via: 1.1 proxyA, 1.1 proxyB

200 OK
Content-Type: message/http
Via: 1.1 proxyA

TRACE http://server/ HTTP/1.1
Max-Forwards: 0
Via: 1.1 proxyA, 1.1 proxyB

Client Proxy A Proxy B Origin
Server

1

TRACE
Max-Forwards: 0

Proxy C

2200 OK
Content-Type: message/http

� Figure 3.24
When a proxy receives a request
with Max-Forwards set to zero, it
responds to the request itself
instead of relaying it toward the
origin server. In this example proxy
B does not forward the request but
responds directly. The message
body in the response is a copy of
the request that proxy B received.

� Figure 3.23
The Max-Forwards header limits the
number of proxies through which a
request may pass. Once it reaches
zero, the request travels no further.
The proxy that responds to the
TRACE request returns the original
message itself in the message body
of its response.

98 HTTP Essentials

Figure 3.24 breaks with our normal convention by showing
full http messages in steps 5 and 6. These steps show the
response from proxy b as it travels back to the client. When
the client receives the response in step 6, it gains important
new information about the problem. It now knows (from the
message body) that the next hop after proxy a is proxy b.

The client continues probing the path in this way. With each
request it increases the initial Max-Forwards value by one.
Eventually it receives the response of step 20 in figure 3.25.
And this response allows the client to detect the loop. From
the Via header in the message body, the client can see that
the request passed through proxy a twice, and thus it is stuck
in a loop.

Clients can use a similar process to detect intermediate
server failures. They start with a Max-Forwards value of zero
and increment it each time they get a response to the TRACE
request. When no response arrives, the client knows where
the request fails.

Client

13

Proxy A Proxy B Origin
Server

TRACE
Max-Forwards: 3

Proxy C

TRACE
Max-Forwards: 2
Via: 1.1 proxyA

200 OK
Content-Type: message/http
Via: 1.1 proxyC, 1.1 proxyB,
 1.1 proxyA

TRACE http://server/ HTTP/1.1
Max-Forwards: 0
Via: 1.1 proxyA, 1.1 proxyB,
 1.1 proxyC, 1.1 proxyA

14

15

TRACE
Max-Forwards: 1
Via: 1.1 proxyA,
 1.1 proxyB

16

20
17

18

19 200 OK

Figure 3.25 �
The Max-Forwards header can limit

the looping of a request. Each proxy
decrements the header’s value as it

passes through, until the value
reaches zero. In this example Max-
Forwards is zero when the request

reaches proxy A the second time (at
step 16). At that point proxy A

responds to the request rather than
relaying it further.

HTTP Messages 99

3.2.35 Meter

Like the Cache-Control header we saw before, the Meter
header supports several different options known as directives.
Caching proxy servers and origin servers use these directives
to report the cached page views and to limit the caching of
resources, as section 2.4.5 explains. This metering process
occurs in three phases. First, the proxy advertises its willing-
ness to support metering in the initial request. Second, the
origin server asks for specific metering services in its re-
sponse. And finally, the proxy actually reports usage in later
requests for the same object. Table 3.9 lists the individual
Meter directives, as well as the phase in which each is em-
ployed. As the table indicates, each directive has both a regu-
lar and a short form.

Table 3.9 Meter Header Directives

Directive Short Used In Use

count=n/m c=n/m Later

request

Proxy server reports usage.

do-report d Response Origin server asks proxy to pro-

vide reports.

dont-report e Response Origin server tells proxy not to

provide reports.

max-reuses=n r=n Response Origin server specifies a limit for

non-unique page views.

max-uses=n u=n Response Origin server specifies a limit for

unique page views.

timeout=n t=n Response Origin server specifies the

maximum time between re-

ports.

will-report-and-

limit

w Initial

request

Proxy can support metering.

wont-ask n Response Origin server indicates it will

not ask for metering of any

objects.
continues…

100 HTTP Essentials

Table 3.9 Meter Header Directives (continued)

Directive Short Used In Use

wont-limit y Initial

request

Proxy understands metering,

but won’t limit usage.

wont-report x Initial

request

Proxy understands metering,

but won’t report usage.

The metering process begins when a request passes through
a proxy server. If the proxy server is willing to support meter-
ing, it adds a Meter header to the request. In the header, the
proxy can identify the type of support it is offering with the
will-report-and-limit, wont-limit, or wont-report

directive. Without any specific directive, the default is to
both report and limit. The proxy must also add a Connec-
tion: Meter header to the request, as the Meter header
must be limited to the immediate connection. In fact, if the
proxy is content with the default case (supporting both re-
porting and limiting), it need include only the Connection
header, as Connection: Meter implies the presence of the
Meter header.

GET / HTTP/1.1
Via: proxy
Connection: Meter

When the server responds to this request, it provides guid-
ance to the proxy with a Meter header in the response. That
header may include a series of directives. It can tell the proxy
whether the server wants to receive reports (do-report or
dont-report); it can specify the maximum number of times
the proxy should return the response from its cache (max-
uses and max-reuses), and it can specify a time limit before
which the proxy should send a new report (timeout=n).
Note that, unlike many http header values, the Meter:
timeout=n specifies minutes, not seconds. In the example
below, the origin server asks the proxy to provide reports at
least as often as every hour. The response also specifies no
limits. If the server wants to tell the proxy not to send it any

HTTP Messages 101

more Meter headers, it can use the wont-ask directive in its
own Meter header.

HTTP/1.1 200 OK
Date: Sun, 08 Oct 2000 18:46:12 GMT
Meter: do-report, timeout=60
Connection: Meter

...

When the proxy sees the server’s response and caches the
message body, it begins counting the number of times it re-
turns the object from its cache. It should count both the
number of unique page views (requests from new users) and
the number of non-unique page views (re-requests from the
same user). Proxies consider any response in which they ac-
tually return the object (with a 200 OK status, in other
words) as a unique page view and any response that simply
confirms the client’s previously stored copy (a 304 Not

Modified status) as a non-unique page view. Whenever ei-
ther of these counts reaches the maximum specified by the
origin server, the proxy revalidates the object with the origin
server before returning it to a client.

As the proxy server continues to receive requests for the
cached object, it must determine when to send a usage report
to the origin. The proxy sends this report whenever it must
send or forward a conditional GET or HEAD to the origin
server, whenever the origin server’s time limit expires, or
whenever the proxy removes the object from its cache. The
report consists of a Meter header with a count directive. The
two count values are the number of uses and the number of
reuses. The example below reports 934 uses and 201 reuses.

GET / HTTP/1.1
Via: proxy
Meter: count=934/201
Connection: Meter

102 HTTP Essentials

3.2.36 Pragma

The Pragma header is a holdover from earlier versions of
http. With http version 1.1, there is only one format for
this header; it is illustrated in the following fragment.

Pragma: no-cache

Officially, this header is intended as a way for clients to indi-
cate that they do not want any intermediate servers to reply
to the request with a cached response. Instead, they’re asking
proxies to forward the request all the way to the origin server.
In practice, many servers include Pragma: no-cache in their
responses as a way to tell intermediate servers not to save the
response in their caches. This behavior is so common that
many cache servers honor it, even though it has never been
standardized. Servers are cautioned, however, not to assume
that all intermediate servers will accept the header. A safer
alternative for origin servers that don’t want their response
cached is to include an Expires header with a date in the
past.

At some point in the future all intermediate systems will be
compliant with http version 1.1. At that time, servers and
clients can both use the Cache-Control: no-cache header,
which is http 1.1’s preferred method of controlling caching.

3.2.37 Proxy-Authenticate

The Proxy-Authenticate header lets intermediate proxy
servers authenticate a client. By including this header in a
response, the proxy asks the client to reissue the request but
to include its authorization credentials. Proxy servers must
always include Proxy-Authenticate in any response with a
407 Proxy Authentication Required status. In operation,
Proxy-Authenticate is similar to WWW-Authenticate, ex-
cept that it is generated by proxy servers rather than origin
servers. Both proxy and origin server authentication tech-
niques are discussed in more detail in section 4.1.

HTTP Messages 103

3.2.38 Proxy-Authorization

A client responds to a proxy server’s demand for authentica-
tion by including a Proxy-Authorization when it reissues
its request. Section 4.1 describes the approach in detail.

3.2.39 Range

The Range header lets a client request part of a resource in-
stead of the entire object. As we first saw in section 3.2.5, the
header takes the following form. In a request, this header
asks for the second 500 bytes (byte number 500 through byte
number 999, inclusive) and for the last 2 bytes of the re-
source. Note that http 1.1 numbers bytes starting with 0.

Range: bytes 500-999, -2

If a server is able to honor the client’s request, it returns a
status code of 206 Partial Content. The server also in-
cludes the Content-Range header in its response. If the
server cannot return the requested range but it can respond
with the entire object, the server does so with a status of 200
OK. Because of this rule, and because some servers may not
understand the Range header, clients that use it should be
prepared to receive the entire object in a response.

3.2.40 Referer

The Referer header (yes, it is misspelled) appears in client
requests so the server can identify where the client obtained
the uri in its request. As an example, look at the Web page
of figure 3.26. That is the home page of the Internet
Engineering Task Force, found at http://www.ietf.org.

Notice that the page includes a link to the Web site for the
Internet Assigned Numbers Authority (iana). The link ap-
pears at the bottom of figure 3.26, toward the right, and the
html fragment for the link is the following.

IANA

http://www.ietf.org

104 HTTP Essentials

If the user clicks on the link, the browser issues an http GET
request to www.iana.org. Because the link appears on the
www.ietf.org page, the request will list the ietf’s page in the
Referer header. Here is the actual http GET request.

GET / HTTP/1.1
Referer: http://www.ietf.org/
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible;
 MSIE 5.5; Windows NT 5.0)
Host: www.iana.org
Connection: Keep-Alive

Figure 3.26 �
When a user follows a Web page link,
such as this link to IANA, the browser

includes the Web address of the
referring page, www.ietf.org, in its

request for the new page.

HTTP Messages 105

3.2.41 Retry-After

Servers use the Retry-After header to tell a client when it
should retry its request. The header can specify a date, so
that the following header asks a client to wait until 1 January
2001 to reissue its request.

Retry-After: Sun, 31 Dec 2000 23:59:59 GMT

The header can also simply indicate a number of seconds.
The example below tells the client to wait 2 minutes (120
seconds) before retrying.

Retry-After: 120

Servers can use this header with 503 Service Unavailable
or with any of the 3xx status code responses. In the latter
case, the client should delay its redirected request by the in-
dicated amount; there is no suggestion as to how long the
client should wait before reissuing its request to the original
server.

3.2.42 Server

With the Server header, an http server identifies the soft-
ware that it uses to implement http. This header is the
server’s version of the User-Agent header. (See section
3.2.48.) The following examples show some of the Server
header values that can be found on the Web today.

Server: Apache/1.3.6 (Unix) (Red Hat/Linux)

Server: IBM-Planetwide/10.45
 Domino-Go-Webserver/4.6

Server: Microsoft-IIS/5.0

Server: NaviServer/2.0 AOLserver/2.3.3

Server: Netscape-Enterprise/3.6 SP3

Server: Xitami

106 HTTP Essentials

3.2.43 Set-Cookie2

The Set-Cookie2 header is a slightly updated form of the
Set-Cookie header from http version 1.0. Both headers are
used by servers to initiate http state management with a
client. (See section 2.5.) By including a Set-Cookie2 header
in its response, a server provides a state management cookie
to the client, and it implicitly asks the client to return that
cookie in subsequent requests to the server.

The header begins by giving the cookie a name and a value,
and then it may provide any of the attributes listed in table
2.1. An example header with all possible attributes follows.

Set-Cookie2: NAME="VALUE";
 Comment="Shopping Cart";
 CommentURL="http://merchant.com/cookies.html";
 Discard; Max-Age="300"; Path="/shopping";
 Port="443"; Secure; Version="1"

Section 2.5 describes the state management process, includ-
ing the interpretation of the various attributes and the rules
clients and servers must follow when using cookies.

3.2.44 TE

The TE header tells a server which transfer encodings the
client can accept in a response, and it can indicate the client’s
relative preferences for those transfer encodings. This header
is very similar to the Accept-Encoding header, except that it
applies to transfer encodings rather than content encodings.

The format for the TE header is very similar to that for the
Accept-Encoding header. The header value is a comma-
separated list of transfer encoding names, each with an
optional quality factor. For example, the following header
indicates that the client can accept gzip and deflate transfer
encodings, but it prefers gzip because that has a higher
quality factor. (As with other headers, if the client doesn’t
explicitly indicate a quality factor for a particular option, the
server assumes a value of 1.0.)

HTTP Messages 107

TE: gzip, deflate;q=0.9

In addition to the standard transfer encodings, the TE header
defines a special value to identify the chunked transfer en-
coding with trailer fields. That value is simply trailers, as in
the following example. Note that there is no need for a client
to list the chunked transfer encoding itself in a TE header, as
all http 1.1 clients must be prepared to accept the chunked
transfer encoding. The use of trailer fields with chunked en-
coding, however, is optional; this header value lets a client
advertise that it understands that format.

TE: trailers

3.2.45 Trailer

Clients and servers may include the Trailer header when
they use the chunked transfer encoding for the message
body. This header lists any other http headers that appear
after the message body, rather than in the normal position
before the body. It tells the recipient which http headers it
can expect in the chunked transfer encoding’s trailer. There
are three http header fields that cannot appear in a chunked
trailer: Transfer-Encoding, Content-Length, and Trailer.
These fields, therefore, cannot appear in the Trailer header.

The following example shows a sample response with the
Trailer header. The response uses the chunked transfer en-
coding, and the Trailer header lists Expires. As expected,
the Expires “header” then appears after the message body.

HTTP/1.1 200 OK
Date: Fri, 31 Dec 1999 23:59:59 GMT
Content-Type: text/plain
Transfer-Encoding: chunked
Trailer: Expires

1a
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0
Expires: Sat, 01 Jan 2000 23:59:50 GMT

108 HTTP Essentials

3.2.46 Transfer-Encoding

The Transfer-Encoding header identifies the transfer en-
coding format of a message body. Although the http 1.1
specifications define this header in a general way, current
implementations use it almost exclusively to identity the
chunked transfer encoding.

Transfer-Encoding: chunked

The developers of http 1.1 created the chunked transfer en-
coding to improve the performance of http servers. With
this feature, servers can begin sending a response while
they’re composing it; without chunked encoding, on the
other hand, they’re forced to delay responding until the en-
tire message is complete.

The issue arises because http 1.1 servers must indicate the
size of their response messages. That wasn’t the case with
earlier versions of http. Before http 1.1, servers could just
send their response and then close the tcp connection. A
client could tell that it had received the full response when
the connection closed. With http 1.1, though, persistent
connections are the default behavior, and closing the connec-
tion after every response makes persistent connections im-
possible. Clients still need some way to know when they’ve
received all of a message, however. The Content-Length
header is the simplest solution to this problem. When the
server includes a Content-Length header in a response, the
client merely needs to count bytes to know when it has the
complete response.

Although simple and easy to use, the Content-Length
header introduces its own problem. As an http header,
Content-Length is one of the first parts of a response. In
particular, it precedes the message body. But before a server
can calculate the value for Content-Length, it must know
the full size of the message body. This restriction means that
before a server can begin sending a response, it must
compose the full message body and calculate its size. When

HTTP Messages 109

the message body is large, and when the server constructs the
message dynamically, the resulting delay can significantly
degrade the server’s performance.

A more efficient approach would allow the server to begin
sending its response as soon as it began composing the mes-
sage body. As the server creates additional parts of the re-
sponse message, it immediately sends them to the client.
This approach is exactly what chunked transfer enables.

With chunked transfer encoding, the server divides the mes-
sage body into one or more chunks. In its response, the server
sends each of these chunks, one after the other. Each chunk
is preceded by a line that indicates the chunk size in hexa-
decimal. The last chunk has a size of zero bytes. Here is an
example of a response message with three chunks. (The third
chunk has a size of 0, so only the first two chunks contain
any content.) The total size of the message body is 36 bytes.
(The first chunk is 1a16, or 26 bytes; the second adds 0a16, or
10, more.)

HTTP/1.1 200 OK
Date: Fri, 31 Dec 1999 23:59:59 GMT
Content-Type: text/plain
Transfer-Encoding: chunked

1a
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0a
0123456789
0

For comparison, here is how the same message body could be
conveyed without chunked transfer encoding.

HTTP/1.1 200 OK
Date: Fri, 31 Dec 1999 23:59:59 GMT
Content-Type: text/plain
Content-Length: 36

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789

110 HTTP Essentials

3.2.47 Upgrade

The Upgrade header lets a client and server gracefully nego-
tiate an upgrade to a different communications protocol. The
new protocol may be a newer version of http or a com-
pletely different protocol such as Transport Layer Security.
(Section 4.3.3 describes how tls can use Upgrade.) The cli-
ent proposes the protocol upgrade by including an Upgrade
header in its request.

GET http://www.bank.com/acct.html?749394889300
HTTP/1.1
Host: www.bank.com
Upgrade: TLS/1.0
Connection: Upgrade

The server can respond to this request with a 101 Switch-
ing Protocols status, and it includes its own Upgrade
header.

HTTP/1.1 101 Switching Protocols
Upgrade: TLS/1.0, HTTP/1.1
Connection: Upgrade

Notice that both the request and response also include the
Connection: Upgrade header. This header must always ap-
pear when Upgrade is used because any upgrade applies only
to the immediate connection between the client and the first
server. If a client wants to upgrade its communications with
an origin server, it can use the CONNECT method to establish a
virtual connection with that server and then upgrade that
virtual connection.

The example also shows that the 101 Switching Proto-
cols response lists a series of protocols in the Upgrade
header. In that response, the server indicates that it is up-
grading to http 1.1 over tls 1.0.

3.2.48 User-Agent

The User-Agent header is the client’s version of the Server
header. With User-Agent, a client identifies the specific

HTTP Messages 111

http implementation it is using. For example, the following
is how Netscape Navigator on an Apple Macintosh identifies
itself.

User-Agent: Mozilla/4.x (Macintosh)

The Web site http://browserwatch.internet.com keeps track
of the different client implementations accessing its pages.
Recently, it had detected 213 variations of Microsoft’s Inter-
net Explorer, 65 variations of Netscape’s Navigator, and 510
other http clients.

3.2.49 Vary

With the Vary header origin servers give proxy servers extra
guidance in the management of their local caches. The Vary
header lists other http headers that, in addition to the uri,
determine which resource the server returns in its response.
For example, some origin servers may return different re-
sources depending on the User-Agent value in the client’s
request. (They may have one page optimized for Microsoft’s
Internet Explorer and a different page for Netscape Naviga-
tor.) In such cases the server should include a Vary header in
its response.

HTTP/1.1 200 OK
Date: Fri, 31 Dec 1999 23:59:59 GMT
Content-Type: text/html
Vary: User-Agent

...

A proxy server will then know that it can return a cached
copy of this response to subsequent requests, but only if
those requests have the same User-Agent value as the origi-
nal request. A different User-Agent value forces the cache to
query the origin server again.

An asterisk as the value for the Vary header indicates that
parameters other than http headers also influenced the con-
tent of the response, effectively marking the response as not
cachable.

http://browserwatch.internet.com

112 HTTP Essentials

3.2.50 Via

The Via header traces the path of a message as it travels
through proxy servers. The http specifications require that
every intermediate server that handles a request or response
identify itself with a Via header before forwarding the mes-
sage. A proxy can add its own Via header or simply build on
an existing one. Figure 3.27 shows how the Via header grows
as a request travels from client to origin server.

The first proxy server creates a Via header and adds its own
identity as the value. (Although the figure shows this iden-
tity as proxyA, the server would normally use a full domain
name.) The 1.1 that precedes the server name is the http
version that was in force when the server received the re-
quest. When the request passes through proxy b, that proxy
doesn’t add a completely new Via header (though it could do
so if desired). Instead, it simply appends its own name to the
existing Via header. Proxy b also includes an http version
immediately before its name.

It is important that proxy servers create or adjust the Via
header before they perform any other processing of the mes-
sage. For example, a proxy may receive a TRACE request with
Max-Forwards of 0, indicating that the proxy cannot forward
the request any further. That is the case for proxy b in figure
3.28. Before proxy b responds to the TRACE request, however,
it must insert its identity in the Via header. After doing so, it
generates the response of step 3. Only by adjusting the Via

Client Proxy A Proxy B Origin
Server

1 GET URI 2 GET URI
Via: 1.1 proxyA

3
GET URI
Via: 1.1 proxyA,
 1.1 proxyB

Figure 3.27 �
The Via header records the path of an
HTTP message as it travels through a
network of proxy servers. The servers
also indicate the HTTP version under

which they accepted the message.

HTTP Messages 113

header before processing the request is proxy b able to ensure
that its identity appears in the TRACE response.

3.2.51 Warning

The Warning header carries additional information about a
response, usually intended to alert the user to potential cache
problems. Its format is as follows, though the date is op-
tional. A Warning header may include many individual
warnings, each separated by a comma.

Warning: 110 proxy.com "Response is stale"
 Fri, 31 Dec 1999 23:59:59 GMT

The first field is a warning code, and the next field identifies
the server that created the warning. The quoted string is a
natural language explanation of the warning, appropriate for
human users. The optional final field carries the time of the
warning.

Client Proxy A Proxy B Origin
Server

34

1
TRACE URI
Max-Forwards: 1

2
TRACE URI
Max-Forwards: 0
Via: 1.1 proxyA

200 OK
Content-Type: message/http

TRACE http://server/ HTTP/1.1
Max-Forwards: 0
Via: 1.1 proxyA, 1.1 proxyB

200 OK
Content-Type: message/http
Via: 1.1 proxyA

TRACE http://server/ HTTP/1.1
Max-Forwards: 0
Via: 1.1 proxyA, 1.1 proxyB

� Figure 3.28
A client can discover the path its
messages are taking looking for
Via headers in a TRACE response
message. Note that proxy B
updates the Via header, by
inserting its own identity, before
it responds to the request.

114 HTTP Essentials

Just as http 1.1 defines a series of status codes, it also defines
warning codes (though the list is much smaller). Table 3.10
lists those codes, along with suggested explanation text.

Table 3.10 HTTP 1.1 Warning Codes

Code Explanation Meaning

110 Response is stale The proxy returned an expired object

in its response (perhaps because the

client used the max-stale cache

directive).

111 Revalidation failed The proxy could not verify that the

object is still valid (perhaps because it

could not contact the origin server).

112 Disconnection operation The proxy has been intentionally dis-

connected from the network.

113 Heuristic expiration The proxy has made a guess that the

object is still valid, but the object is

more than 24 hours old.

199 Miscellaneous warning An arbitrary warning.

214 Transformation applied The proxy has modified the object in

some way (perhaps by changing its

image format to save cache space).

299 Miscellaneous persistent

warning

An arbitrary warning that may con-

tinue to recur.

When a proxy receives a Warning header with a date that
differs from the Date header in the response, the proxy de-
letes that particular warning from the header. If that leaves
the Warning header with no warnings, the proxy also re-
moves the Warning header. This behavior ensures that warn-
ings are not propagated inappropriately through a network of
cache servers. Without it, an object might get “stuck” with an
inappropriate warning.

3.2.52 WWW-Authenticate

The WWW-Authenticate header lets origin servers authenti-
cate a client. By including this header in a response (usually

HTTP Messages 115

one with a 401 Unauthorized status), the server asks the
client to reissue the request but to include its authorization
credentials. The subject of http authentication is worthy of
its own chapter, and indeed, it is the topic of section 4.1,
which examines WWW-Authenticate in detail.

3.3 Status Codes

As we’ve seen in many examples, an important part of every
http response is the status code. That code defines whether
a client’s request succeeded and can provide additional in-
formation about the request’s outcome. Every status code
value is a three-digit number, and the http specification
classifies status codes based on the first digit of these values.
Status codes provide information (100-199), indicate success
(200-299), redirect a client (300-399), indicate a client error
(400-499), or indicate a server problem (500-599). In each
class, the x00 status code is the master status for the class. If
a client receives a status code value that it does not under-
stand, it can safely treat it the same as it would treat the x00
value in the class. For example, a status code value of 237
should be treated the same as 200.

Table 3.11 provides a complete list of all status codes that
http defines, grouped by their class. We’ll look at each code
in more detail throughout this section.

Table 3.11 HTTP Status Codes

Class Code Description

1xx Informational

 100 Continue

 101 Switching Protocols

2xx Successful

 200 OK

 201 Created

 202 Accepted
continues…

116 HTTP Essentials

Table 3.11 HTTP Status Codes (continued)

Class Code Description

 203 Non-Authoritative Information

 204 No Content

 205 Reset Content

 206 Partial Content

3xx Redirection

 300 Multiple Choices

 301 Moved Permanently

 302 Found

 303 See Other

 304 Not Modified

 305 Use Proxy

 306 (unused)

 307 Temporary Redirect

4xx Client Error

 400 Bad Request

 401 Unauthorized

 402 Payment Required

 403 Forbidden

 404 Not Found

 405 Method Not Allowed

 406 Not Acceptable

 407 Proxy Authentication Required

 408 Request Timeout

 409 Conflict

 410 Gone

 411 Length Required

 412 Precondition Failed

 413 Request Entity Too Large

 414 Request-URI Too Long

 415 Unsupported Media Type

HTTP Messages 117

Table 3.11 continued

Class Code Description

 416 Requested Range Not Satisfiable

 417 Expectation Failed

 426 Upgrade Required

5xx Server Error

 500 Internal Server Error

 501 Not Implemented

 502 Bad Gateway

 503 Service Unavailable

 504 Gateway Timeout

 505 Version Not Supported

3.3.1 Informational (1xx)

Status codes in the range from 100 to 199 are provisional.
They give the server a way to provide some feedback to the
client, even though the server hasn’t yet finished its response.

100 Continue

The 100 Continue status code is part of a process that lets
clients “test the waters” with a server. This ability may be
important, for example, if the client has a large message body
and it wants to make sure the server can accept it before go-
ing to the trouble of sending it. There may also be circum-
stances in which it might be inappropriate to send the
message body without knowing the server can receive it.

As an example, suppose a client has a large file that it wants
to PUT to a server. The client may be able to use the con-
tinuation mechanism to avoid wasting network resources. To
do that, the client begins its request with normal http mes-
sage headers. To trigger continuation, it includes the Ex-
pect: 100-continue header in that message. Importantly,
though, the client does not (yet) send the message body. This
is step 1 in figure 3.29.

118 HTTP Essentials

If, after seeing the request’s headers, the server decides that it
can accept the request, the server responds with a 100 Con-
tinue status, as in step 2. This interim response tells the cli-
ent to proceed with its request, so it sends the message body
in step 3. The server completes the exchange with the 200
OK response of step 4.

If, in step 2, the server realizes that it cannot accept the re-
quest, it responds with a different status code. A server might
require authentication (necessitating a 401 Unauthorized
response), or, after seeing the Content-Length value, the
server might recognize that it doesn’t have sufficient disk
space to store the object (413 Request Entity Too Large).

In order to cope with servers that don’t fully support the
continuation mechanism, any client that sends an Expect:
100-continue header should not wait indefinitely for a 100
Continue response. If the server has not responded at all
after some reasonable period of time, the client should pro-
ceed with its request anyway.

101 Switching Protocols

Servers use the 101 Switching Protocols response to ac-
cept a client’s request to upgrade protocols. In figure 3.30, for
example, the client requests an upgrade to Transport Layer
Security by including the Upgrade: TLS/1.0 header in its

Client Server

2

1
PUT URI
Expect: 100-contine

100 Continue

3
message
body

4200 OK

Figure 3.29 �
Clients can ask a server to accept a

request before they send the entire
message body. The Expect header

asks the server to signal its
acceptance by returning a 100

status. Once the client receives a
100 status, it continues by sending

the rest of the request.

HTTP Messages 119

request. The server accepts the upgrade in step 2 with a 101
Switching Protocols interim status, and, in step 3, the ex-
change continues using the new protocol.

3.3.2 Successful (2xx)

Status codes that begin with a 2 represent success. With
these responses, the server tells the client that its request was
received, understood, and accepted.

200 OK

The 200 OK status code is the most basic http response. It
simply says that the client’s request succeeded. Depending on
the request method, the response is likely to include addi-
tional information. For example, in responding successfully
to a GET request, the server includes the requested resource in
the message body. With a HEAD request, however, the server
returns only the response headers, including any entity head-
ers that would apply to the requested resource; the message
body itself, however, is omitted.

201 Created

Servers reply with a 201 Created status when a successful
request results in the creation of a new resource. The Loca-
tion header in the response provides a definitive uri for the
new resource, but the server may include other representa-
tions of the resource or its location in the response’s message
body.

Client Server

2

1
OPTIONS
Upgrade: TLS/1.0

101 Switching Protocols

3 new protocol

� Figure 3.30
The 101 status indicates that the
sender is going to change
protocols. The client should being
using the new protocol as soon as it
receives the 101 response.

120 HTTP Essentials

202 Accepted

With a 202 Accepted status code, a server tells the client
that it has accepted the request, but not yet fulfilled it. The
server may have, for example, scheduled a process to com-
plete the request later. A server that sends this response may
include in the message body some indication of how the cli-
ent can learn the final status of the request. If there’s a uri
that the client can use to check on the request status, for ex-
ample, the server may include that uri in the response.

203 Non-Authoritative Information

The 203 Non-Authoritative Information status code
indicates that some of the response’s headers may not be de-
finitive. They may have, instead, been created by an interme-
diate server. The message body itself, however, is completely
valid.

204 No Content

The 204 No Content status indicates that the server ac-
cepted the request, but it does not need to return any infor-
mation to the client in response. This type of response is
valuable in many dynamic and interactive Web sessions.
Consider figure 3.31, for example, which shows a browser-
based user interface for a telecommunications server. The
mouse pointer is hovering over a checkbox (in the bottom
left of the screen) that lets the user disable automatic updat-
ing of the display.

If the user clicks on the checkbox, the browser may need to
send an http request to the server, and the most likely can-
didate is a GET or POST method. Normally, however, a server
would respond to a GET or POST request by sending the indi-
cated resource, and the browser accepts the resource and dis-
plays it for the user. In this case the user should see the same
page after clicking the checkbox, only the checkbox state will
now be disabled. But that means that the server must send
the entire Web page again, including its complex tables and
graphic images. That’s neither necessary (because the

HTTP Messages 121

browser already has all the information it needs to display
the page) nor efficient.

A better approach would have the server respond to the re-
quest with a 204 No Content status. That tells the client
that its request was successful, but there is no new informa-
tion available. The browser can continue to display the exist-
ing Web page (though with a new checkbox status), saving
time, bandwidth, and server resources.

205 Reset Content

The 205 Reset Content status is similar to the 204 No
Content. In both cases the response does not contain any

� Figure 3.31
If a server just needs to acknowledge
a client’s request without actually
sending the client new information, it
can return a 204 status. In this
example the browser already has all
the information it needs to update the
display if the user clicks the checkbox;
a 204 response avoids having to send
the full Web page again.

122 HTTP Essentials

message body. With a 205 Reset Content, however, the
server directs the client to reset the document view that gen-
erated the request. Typically that’s equivalent to the user
clicking a Reset button on a Web form.

206 Partial Content

Servers that respond to a request for a subset of a resource (a
request with a Range header) use the 206 Partial Content
status when they accept the request and return only the re-
quested subset. The response also includes a Content-Range
header to identify which parts of the resource are present in
the response’s message.

3.3.3 Redirection (3xx)

Status codes from 300 to 399 tell the client that it needs to
take further action to fulfill its request. Specifically, the
server asks the client to reissue its request, but for a different
uri. If there is only one alternative location available, or if
the server has a preference for one particular location among
the alternatives, the server includes the uri for that location
in the Location header. Other alternatives may be listed in
the message body.

If the client’s original request was a GET or HEAD, the client
can safely reissue the request to the indicated uri automati-
cally, without consulting the user. With other requests, how-
ever, there may be security implications, and the client
should first ask permission from the user.

300 Multiple Choices

The 300 Multiple Choices status gives the client a list of
alternative locations for the request. The server provides
these in the response’s message body, and it may include one
in a Location header.

301 Moved Permanently

When a resource’s uri has changed permanently, the server
may respond with a 301 Moved Permanently status. The

HTTP Messages 123

client (and any proxies) should, henceforth, use the indicated
uri for all future references to the resource. All of the other
3xx status codes represent temporary conditions.

302 Found

The 302 Found status indicates that the resource has tempo-
rarily moved to a new location, and the client should reissue
its request to the new uri. In practice, many clients that re-
ceive a 302 Found status will send a GET request to the new
uri, even if the original request used another method. This
behavior actually violates the http specifications, but it is so
common that servers should take it into account. With ver-
sion 1.1, http introduced the 303 See Other and 307 Tem-
porary Redirect status codes to address this problem.

303 See Other

The 303 See Other status is the http specification’s way of
properly asking clients to do what many already do in reac-
tion to a 302 Found response—send a GET request to the
indicated uri. The 303 See Other status is intended pri-
marily as a response to a POST request. After the client issues
the POST, this response tells it where to get the next resource
to display for the user. Consequently, the location indicated
by a 303 See Other status is not a new location for the
original resource. It is, rather, a reference to an entirely new
resource.

304 Not Modified

If a request includes a condition (such as an If-Match or If-
Modified-Since header) and that condition is not met, the
server responds with a 304 Not Modified status. Typically
this allows the client (or proxy server that forwarded the re-
quest) to use a cached copy of the resource.

305 Use Proxy

The 305 Use Proxy status asks the client to reissue the re-
quest to a proxy server. Only origin servers should generate
this status, and the status applies only to the initial request.

124 HTTP Essentials

307 Temporary Redirect

The 307 Temporary Redirect status officially means the
same as a 302 Found status: The resource has temporarily
moved to a new location, and the client should reissue its
request there. In particular, the client should use the same
request method. As noted previously, http 1.1 added this
status code because so many clients react improperly to the
302 Found status.

3.3.4 Client Error (4xx)

If a server encounters a problem with a client’s request, it can
use one of the 4xx status codes in its response. The specific
status code may provide more information about the prob-
lem the server detected.

400 Bad Request

The standard status code for client errors is 400 Bad Re-
quest. This response indicates that the server did not under-
stand the request, perhaps because there is an error in its
formatting. The client should not reissue the same request, as
it will be rejected as well.

401 Unauthorized

The 401 Unauthorized status code tells the client that the
server requires user authentication before granting access to
the resource. The server includes a WWW-Authenticate
header in its response to give the client guidance on the type
of authentication it requires. As section 4.1 explains, clients
react to this status by reissuing the request with an appropri-
ate Authorization header.

402 Payment Required

Although the http specifications define this status code, it
is currently just reserved for future use. Of course, its mean-
ing is fairly self-explanatory. It is much less clear, however,
how a client should react to receiving it.

HTTP Messages 125

403 Forbidden

A client that receives a 403 Forbidden status code has at-
tempted to access a resource that cannot be accessed. Unlike
the case for a 401 Unauthorized status code, no Authori-
zation header will grant the client access. Servers should
note that by returning a 403 Forbidden response, they im-
ply that the requested resource does, in fact, exist. If revealing
this information is not appropriate, the server can use a 404
Not Found status code instead.

404 Not Found

The 404 Not Found status code indicates that the requested
resource does not exist. It does not give any information
about whether this condition is permanent or temporary. If a
server wishes to explicitly indicate a permanent condition, it
may use the 410 Gone status instead.

405 Method Not Allowed

The 405 Method Not Allowed status tells the client that
the method it used is not permitted with the referenced re-
source. Servers include an Allow header in their response to
tell clients what methods are permitted.

406 Not Acceptable

When a server returns a 406 Not Acceptable status, the
client’s request can generate only responses that the client
has indicated are not acceptable. The message body of the
response may indicate the entity characteristics that the re-
quest can generate. This status should appear only in re-
sponse to requests with Accept, Accept-Charset, Accept-
Encoding, or Accept-Language headers.

407 Proxy Authentication Required

The 407 Proxy Authentication Required tells a client
that it must authenticate itself with a proxy server before its
request can proceed. The proxy server that generates this re-
sponse includes a Proxy-Authenticate header to guide the

126 HTTP Essentials

client in providing an appropriate Proxy-Authorization
header in its reissued request.

408 Request Timeout

With the 408 Request Timeout status, a server indicates
that it has timed out waiting for a request from the client.

409 Conflict

The 409 Conflict status indicates that the server could not
complete the request because of a conflict with the current
state of the resource. This conflict could arise, for example,
when a PUT request includes changes to a resource that
would conflict with changes already accepted by a third
party.

410 Gone

The 410 Gone status indicates that a resource is no longer
available. This condition should be considered permanent.

411 Length Required

When a server returns a 411 Length Required status, it
refuses to accept a request unless the client reissues the re-
quest with a valid Content-Length header.

412 Precondition Failed

The 412 Precondition Failed status indicates that one of
the conditions the client included in its request (through, for
example, an If-Match header) did not apply.

413 Request Entity Too Large

The 413 Request Entity Too Large status indicates that
the message body of a request was larger than the server
could accept. If the server expects this condition to be tem-
porary, it can include a Retry-After header in its response.

414 Request-URI Too Long

If a client includes a uri in its request that is longer than the
server is willing to interpret, the server can respond with a
414 Request-URI Too Large status.

HTTP Messages 127

415 Unsupported Media Type

By returning a 415 Unsupported Media Type status, a
server indicates that it cannot understand the media type of
the request’s message body.

416 Requested Range Not Satisfiable

When a client asks for a range of a resource (with the Range
header) and the range is not valid, the server responds with a
416 Requested Range Not Satisfiable status.

417 Expectation Failed

If a server cannot meet a client’s expectations as conveyed in
a request’s Expect header, it returns a 417 Expectation

Failed status.

426 Upgrade Required

The 426 Upgrade Required status lets a server tell a client
that it must upgrade the application it’s using for the request.
A server that wanted to force its client to upgrade to Trans-
port Level Security (tls), for example, would return this
status along with an Upgrade header identifying tls as the
required application upgrade.

3.3.5 Server Error (5xx)

In contrast to the 4xx status codes, which point to a client
problem, the 5xx status codes indicate a problem on the
server.

500 Internal Server Error

The 500 Internal Server Error status is a general indica-
tion of a server problem. If the server can provide further
details, it may do so in the response’s message body.

501 Not Implemented

The 501 Not Implemented status indicates that the server
does not support the request’s method for any resource, not
just the resource requested.

128 HTTP Essentials

502 Bad Gateway

If a proxy server receives an invalid response from the server
to whom it forwarded a request, it responds to the client
with a 502 Bad Gateway status.

503 Service Unavailable

The 503 Service Unavailable status indicates that the
server is temporarily unable to satisfy the request, perhaps
because the server is currently overloaded or undergoing
maintenance. The server may include a Retry-After header
in its response if it anticipates that the problem will be cor-
rected by that time.

504 Gateway Timeout

When a proxy server times out waiting for a response from
another server, it returns a 504 Gateway Timeout status to
the client.

505 Version Not Supported

The 505 Version Not Supported status indicates that the
server cannot support the http version identified in the cli-
ent’s request.

129

CHAPTER 4

Securing HTTP —
Adding Authentication & Privacy

If the World Wide Web were nothing more than a linked
collection of static information, then securing the Web’s pro-
tocols would be less important. With the growth of elec-
tronic commerce and the extension of http to critical
environments outside of the Web, however, adding security
to http is critical for many applications. Security allows the
communicating parties to verify each other’s identity, to en-
sure the privacy of their communication, and to protect their
messages from modification or corruption.

This chapter looks at the various ways to add security to
http. The first section, Web Authentication, details the pro-
cedures built into http 1.1. The second section introduces
the Secure Sockets Layer (ssl) protocol. By far the most
common way of providing security on the Web, ssl is a sepa-
rate protocol that adds security to many applications. It was
designed, however, especially for http. The Transport Layer
Security (tls) protocol is the most recent revision of ssl. It
is very similar to ssl, but it includes a few additional features
tailored for http communications. Finally, the chapter takes

130 HTTP Essentials

a brief look at Secure-http (shttp). Originally developed
about the same time as ssl, shttp defines extensions directly
to the http protocol for security. shttp has largely been
supplanted by ssl in actual operation, but a few implementa-
tions still exist.

4.1 Web Authentication

Although some sections of this chapter discusses securing
http using additional protocols or extensions, http in-
cludes its own security mechanisms. The http security
mechanisms are not as formidable as other approaches, but
they are sufficiently secure for many applications.

The security mechanisms built into http rely on user pass-
words for their security. That makes them relatively simple,
but it is also the source of their weakness. User passwords are
notoriously insecure, as human users often select passwords
that are easy for adversaries to guess. Humans can also be
rather careless about their passwords, reusing the same pass-
word for many systems, leaving passwords on a sticky note
attached to their monitor, or revealing those passwords to an
adversary posing as an administrator or other employee of a
system.

4.1.1 Basic Authentication

The simplest form of http security is basic authentication.
It allows a server to request a username and password from a
client, and it defines how the client should send that infor-
mation to the server. Figure 4.1 shows the process. The client
first sends its http request as usual. For its reply, however,
the server responds with a status code of 401 Unauthorized.
This status code tells the client that it must supply a user-
name and password.

The 401 Unauthorized response includes the WWW-

Authenticate header, and for basic authentication the

Caution:

Basic Authentication

Even though HTTP 1.1 defines the

Basic Authentication mechanism,

it does so very reluctantly. As we’ll

see in this section, the security

Basic Authentication offers is

extremely weak security. Many, in

fact, have argued that it is better

to use no security at all than to

rely on Basic Authentication. We

cover it in this text because it is

part of the specification, however,

and because there are

implementations that do use it.

When given a choice, however, this

author, along with the authors of

the HTTP standard, strongly

recommends against using Basic

Authentication in any application.

Securing HTTP 131

header includes the challenge “Basic,” as well as a value for
the challenge’s realm. One possible response from a server is
as follows.

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic
 realm="users@hundredacrewoods.com"

The server can choose any value it wants for the realm, but
in Web browsing it is typical to use a value that human users
can understand. That’s because Web browsers typically dis-
play the realm for the user when asking for the username and
password. Figure 4.2 shows how a browser might query a
user.

Once the user supplies a username and password, the client
can continue the communication with step 3 of figure 4.1. In

Client Server
2

401 Unauthorized
WWW-Authenticate

1 GET URI

3
GET URI
Authorization

4200 OK

� Figure 4.1
When a server wants a client to
authenticate its user, the server
returns a 401 status. The client can
then reissue the request with
appropriate information included in
the Authorization header.

� Figure 4.2
Web browsers ask their users for
authentication with a pop-up window
like this. HTTP authorization is never
part of a Web page itself, unlike the
SSL-secured server authorization of
figure 4.3.

132 HTTP Essentials

that step it reissues the original request. This time, though,
the client includes the Authorization header in its request.
The Authorization header contains the username and pass-
word the user provides.

To provide the username and password, the client combines
the two, separated by a colon (:), and encodes them accord-
ing to the rules for Base64 encoding. By using the colon to
separate usernames from passwords, http prohibits the
username from itself containing a password. (Otherwise, the
server would not be able to tell where the username ended
and the password began.)

Base64 encoding is a way to convert binary data and encode
it using only the normal, printable characters. It was origi-
nally developed as a way to send email attachments. By en-
coding the username and password using Base64, http
allows passwords to contain any arbitrary characters, not just
those that are printable. The http specification does loosen
one restriction on standard Base64 encoding. Strict Base64
encoding requires a new line at least every 76 characters. In
this case the encoded credentials must fit on a single line of
text, no matter its length. Once a client has encoded the
user’s credentials, it can construct a request such as the fol-
lowing example.

GET /secret/honeypot.html HTTP/1.1
Authorization: Basic QwxhZGRpbjpvcGVuIHNlc2FtZQ==

When the server sees a valid username and password, it can
finally return the requested object. Figure 4.1 shows that in
step 4.

After an http client successfully retrieves an object using
Basic Authentication, the client may continue to include the
Authorization header on subsequent requests to the same
uri or to child uris. Doing so avoids the delay of forcing the
server to return more 401 Unauthorized responses to
prompt for the authorization information.

Securing HTTP 133

One of the more significant problems with Basic Authenti-
cation is that the username and password travel completely
exposed across the network. Any intermediate party that can
intercept or eavesdrop on the communication can recover the
username and password. Because many public networks
comprise the Internet, this vulnerability is a substantial one,
and the http specification recommends that it be used only
when the application’s security requirements are extremely
minimal. The specification further cautions that, even if the
information being secured is relatively unimportant, server
administrators should consider a broader context when de-
ciding to use Basic Authentication. Many human users, for
example, reuse the same username and password for many
different systems. An adversary that intercepts a username
and password from a relatively insecure Web site may be able
to use that same combination for other, more valuable, sites.

To address the lack of real security in http’s Basic Authenti-
cation, many Web sites create their own login process. Figure
4.3 shows one such Web site. Here users are asked for their
name and password via a Web form rather than http au-
thentication. Even though http is used to convey the form
to the user and, via a POST method, return the user’s re-
sponse, http itself has no knowledge that an authentication
process is active. As far as http is concerned, it is simply
performing standard GET and POST actions. Note also the
padlock icon in the extreme lower left corner of the browser’s
window. That icon indicates that the data the user sends to
the Web site will be encrypted using the facilities of the Se-
cure Sockets Layer (ssl) or Transport Layer Security (tls)
protocol, both of which we’ll meet later in this chapter. With
this protection usernames and passwords are immune to in-
terception and eavesdropping.

4.1.2 Original Digest Authentication

Digest Authentication addresses the major weaknesses of
Basic Authentication, namely that usernames and passwords

134 HTTP Essentials

are vulnerable to interception. The Digest Authentication
process was initially defined as an extension to http version
1.0. An improved version has been developed as an extension
to http version 1.1. Because the Digest Authentication pro-
cedures are defined in separate specifications, however, it is
possible to use the original version even in http 1.1 imple-
mentations. For that reason, it is important to understand
both versions. In this subsection we focus on the initial ver-
sion, what we’ve called “Original Digest Authentication.”
Later subsections explore the enhancements available with
the latest Digest Authentication procedures. Collectively, we
call those procedures “Improved Digest Authentication.”

Digest Authentication uses simple cryptographic principles
to avoid transmitting passwords across the network. Instead,

Figure 4.3 �
Some Web sites manage usernames

and passwords themselves rather
than relying on HTTP

authentication. As this example
shows, users input their

authentication information to such
sites via a standard Web page

rather than a browser’s pop-up
dialog box.

Securing HTTP 135

clients prove to the server that they know their passwords
without actually sending them to the server.

To prove knowledge of a password, clients create a message
digest (also known as secure hash) using the password and a
value supplied by the server. They then transfer the digest to
the server. The server verifies the password by duplicating
this calculation. It takes a known value, combines it with the
password it expects the client to use, and calculates a message
digest. If the server’s calculation matches the client’s, then
the server can believe the client knows the correct password.
Figure 4.4 illustrates the process.

For message digests, the server’s choice of data to be com-
bined with the password is critical to the overall security.
Most importantly, the server must choose a different data
value each time. Otherwise an adversary eavesdropping on
the communication could simply reuse a digest value and
impersonate the client. (If neither the data nor the password
change, then the digest value remains the same as well.)

In the case of http, the server begins the Digest Authenti-
cation process with a 401 Unauthorized response, just as
with Basic Authentication. The WWW-Authenticate header,
however, explicitly requests Digest Authentication. The sim-
plest possible case follows.

Client Server

2 digest

1

password data

f()

digest

3

password data

f()

digest

if digest == digest
then password == password

4

Message Digest Algorithms

Message digest algorithms are

based on mathematical

operations known as one-way

functions. A one-way function is a

mathematical transformation that

is relatively easy to perform, but

extremely difficult to reverse. It is

easy for a computer to start with a

password and other information

and calculate a message digest,

but it is mathematically

impossible, given just the resulting

digest, to figure out the password

and information used to create it.

Today there are two common

message digest algorithms. One is

Message Digest 5 (MD5), created

by Ron Rivest. Another common

algorithm is the Secure Hash

Algorithm (SHA), developed by

the U.S. National Institute of

Standards and Technology.

� Figure 4.4
Both clients and servers compute
message digest values. If the two
calculations match, then both parties
have the same password.

136 HTTP Essentials

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest
 realm="users@hundredacrewoods.com",
 nonce="dcd98bc09f81043d3a8cb935ae393db90674"

As the example shows, Digest Authentication requires more
parameters than Basic Authentication. Digest Authentica-
tion also requires the nonce parameter. The value of this pa-
rameter is the data that the client combines with its
password when creating the digest. Servers are free to use
this value any way they see fit, but the http specification
suggests one particular strategy. For GET requests, it suggests
that the nonce be composed of a timestamp and a message
digest of three quantities: the timestamp, the ETag being re-
quested, and a secret value known only to the server. The
timestamp lets the server assign the nonce a limited lifetime;
the ETag value protects against an adversary replaying a cli-
ent’s request to gain access to an updated value of the re-
quested object, and the secret value ensures that adversaries
cannot predict the value of the nonce in advance. This ap-
proach lets clients reissue requests without triggering a new
401 Unauthorized response and the resulting recalculation
of digest values. Because the server is able to see the time-
stamp in the nonce, it can tell how old the nonce is and ac-
cept any repeated requests within an appropriate time
window. For POST and PUT requests, the http specification
suggests using one-time nonces that expressly prohibit reis-
suing the request.

The realm and nonce parameters are the only ones Digest
Authentication requires, but http allows a few more pa-
rameters in the server’s response. Table 4.1 lists all the de-
fined parameters, along with a brief explanation of their use.
Note that many of the parameters are applicable only for
Improved Digest Authentication. Their use is described
more fully in the following subsections.

Caution:

Original Digest Authentication

The digest authentication process

described in this section, which

we’ve called “Original Digest

Authentication,” is a procedure

that HTTP 1.1 defines only for

compatibility with older versions

of the standard. Newer

implementations are encouraged

to use Improved Digest

Authentication procedures.

Securing HTTP 137

Table 4.1 WWW-Authenticate Parameters

Parameter Improved Required Use

algorithm MD5-sess No The specific digest algorithm to use;

either "MD5" (the default) or "MD5-sess";

if the qop parameter is absent, this pa-

rameter must either be absent or "MD5."

domain No No A list of URIs (separated by spaces) that

identify the resources for which this

authentication applies.

nonce No Yes The data to be combined with the

password in generating the digest.

opaque No No An arbitrary value supplied by the

server that the client should return, un-

modified, with its request; may be used

by the server to assist in processing the

request.

qop Yes No The quality of protection; either digest

authentication ("auth") or digest au-

thentication with integrity protection

("auth-int"); the presence of this pa-

rameter triggers advanced digest au-

thentication (see subsection 4.1.3).

realm No Yes A character string to be displayed to

human users to help them identify

which username and password to sup-

ply.

stale No No A flag that, if it has the value "true," indi-

cates that the supplied username and

password are apparently valid (as far as

the server is concerned) but the authen-

ticated request relied on a nonce that

the server no longer considers valid;

indicates to the client that it can

recalculate the digest using a new

nonce without querying the human

user for username and password.

138 HTTP Essentials

When the client receives a Digest Authentication response
from a server, it computes the message digest to add to its
next message. Table 4.2 shows the procedure for Original
Digest Authentication, which must be used when the server
omits a qop parameter from its response. In such cases the
clients are communicating with a server relying on an older
version of the http specification. If the qop parameter is
present then, regardless of its value, the rules of Improved
Digest Authentication apply.

Table 4.2 Client Calculation for Digest Authentication

Step Action

1 Construct a character string consisting of the username, realm,

and the user’s password, each item separated by a colon.

pooh:users@hundredacrewoods.com:honey, for example.

(The specification calls this string “A1.”)

2 Calculate the MD5 digest for this character string and represent

the 128-bit binary result in hexadecimal as 32 ASCII characters

from “0” to “9” and “a” to “f.” (See box.)

3 Construct a second character string consisting of the method

(e.g., GET, POST, etc.) and the URI, again separated by colons. For

example, GET:/secret/honeypot.html. (The specification

calls this string “A2.”)

4 Calculate the MD5 digest for this character string and represent

the result as 32 ASCII characters.

5 Construct a character string by combining the result from step 2,

the nonce supplied by the server, and the result from step 4, all

separated by colons (:).

6 Calculate the MD5 digest for the character string obtained in

step 5 and represent the result as 32 ASCII characters. This value

is the digest.

With the digest calculation complete, the client is now able
to reissue its request with appropriate authorization informa-
tion. One possible message is shown in the following.

Representing Digest Values

The result of a digest calculation is

a binary value. (In the case of MD5,

that value is 128 bits in size.)

Parameters for HTTP messages,

however, are conveniently

represented as printable ASCII

characters. To convert from binary

to ASCII, implementations use a

hexadecimal expression. Every

four bits in the binary value,

beginning with the most

significant, are expressed as a

character from the sets “0” to “9”

and “a” to “f.”

Securing HTTP 139

GET /secret/honeypot.html HTTP/1.1
Authorization: Digest username="pooh",
 realm="users@hundredacrewoods.com",
 nonce="dcd98bc09f81043d3a8cb935ae393db90674",
 uri="/secret/honeypot.html",
 response="dcd98bc09f81043d3a8cb935ae393db90674"

The reissued request repeats the realm and nonce from the
server, and it includes the username, the uri being requested
(in case a proxy server has modified the GET request’s uri in
transit), and the digest result, which appears as the value for
the response parameter. These parameters are the only ones
required in the client’s response, but http defines several
optional parameters. Table 4.3 provides the complete list. As
with WWW-Authenticate, note that some of the parameters
are appropriate only for Improved Digest Authentication.

Table 4.3 Authorization Parameters

Parameter Improved Required Use

algorithm MD5-sess No The specific digest algorithm used;

either "MD5" (the default) or "MD5-

sess"; if the qop parameter is not

included, this parameter must ei-

ther be absent or "MD5."

cnonce Yes No A nonce value created by the client

that triggers mutual authentication

(see subsection 4.1.5); note that the

client must include this parameter

if the server explicitly indicated a

qop parameter.

nc Yes Yes The number of times the client has

issued a request with the same

nonce value; this is expressed in

hexadecimal and begins at

"00000001"; note that the client

must include this parameter if the

server explicitly indicated a qop

parameter.

continues…

140 HTTP Essentials

Table 4.3 Authorization Parameters (continued)

Parameter Improved Required Use

nonce No Yes The nonce value from the server’s

original response.

opaque No No The opaque value originally sent by

the server.

qop Yes No The quality of protection used by

the client; this can be returned only

if the server explicitly specified one

or more qop values in its original

response, in which case the client’s

value must be chosen from among

those the server listed.

realm No Yes The realm defined by the server.

response No Yes The result of the digest calculation.

uri No Yes The URI for the object the client is

requesting; note that the HTTP

specification indicates that values

for this parameter should not be

enclosed in quotation marks,

though all examples in the specifi-

cation (as well as most implementa-

tions) do use quotation marks.

username No Yes The username for the client.

When the server verifies the digest of the client’s request, the
Simple Digest Authentication process is normally complete.
There is, however, one more optional step. The server may, if
it chooses, add a header to its response. That header is the
Authentication-Info header. Practically speaking, Authen-
tication-Info is practical only with Improved Digest Au-
thentication, so we’ll cover it more completely in subsection
4.1.3. One parameter, however, may be used with Original
Digest Authentication. That parameter is nextnonce, and it
is intended to give the server a way to tell the client a new
nonce value to use for subsequent requests.

Securing HTTP 141

Table 4.4 Authentication-Info Parameters

Parameter Improved Required Use

cnonce Yes No The cnonce value in the cli-

ent’s request; this parameter

must be present if a qop value

is specified.

nc Yes No The nc value in the client’s

request; this parameter must

be present if a qop value is

specified.

nextnonce No Yes (but

see text)

A nonce value that the server

wishes the client to use on its

next request.

qop Yes No The quality of protection used

by the client.

rspauth Yes No The result of the server’s digest

calculation; this parameter

must be present if a qop value

is specified.

As the table indicates, the Authorization-Info header re-
quires a nextnonce parameter. Unfortunately, although serv-
ers could reasonably use nextnonce with http 1.0, the
performance enhancements of http 1.1 strongly discourage
its use. The problem is that nextnonce interferes with pipe-
lining. Recall that pipelining allows a client to construct and
send one request before it receives a response to a previous
request. If, however, when the response finally arrives it con-
tains a new nextnonce value, the client’s efforts in construct-
ing the new request will have gone to naught, as they would
have necessarily used a (now) outdated nonce value. The cli-
ent will have to redo that work using the new nonce.

The main advantage to nextnonce is that it allows servers to
change the nonce value frequently, conceivably with every
request. Frequent changes to the nonce do improve security,
and they can protect against replay attacks. The Improved
Digest Authentication procedures, however, define better

142 HTTP Essentials

solutions to both problems, and they should be used instead
of nextnonce whenever possible. That still leaves the prob-
lem of what the server should do with the parameter. The
practical approach, and one that avoids violating the Digest
Authentication specification, is to always include the
nextnonce parameter, but not to change its value.

4.1.3 Improved Digest Authentication

The Original Digest Authentication specification was devel-
oped for version 1.0 of http. With the release of http 1.1,
improvements to the original process have been defined.
These enhancements include defense against replay attacks,
support for mutual authentication, better security for fre-
quent clients, and integrity protection of the communication
between client and server. Some of those features are auto-
matically part of Improved Digest Authentication, while
others are made available only with the advanced services.
Servers and clients must agree to use the optional services.
Table 4.5 lists the additional services available with Improved
Digest Authentication, as well as the mechanism that in-
vokes them. We’ll discuss each of these advanced services
separately in the subsections that follow.

Table 4.5 Digest Authentication Enhancements

Service Mechanism

Replay Protection Always a part of Improved Digest Authen-

tication.

Mutual Authentication Always a part of Improved Digest Authen-

tication.

Repeat Client Security Used if algorithm is MD5-sess.

Integrity Protection Used if qop is auth-int.

One factor common to each of these enhanced services,
however, is the trigger that tells the client whether or not
they are available. That trigger is present in the very first re-
sponse from the server, the 401 Unauthorized. To indicate

Securing HTTP 143

its support for Improved Digest Authentication, the server
explicitly includes a quality of protection, or qop, parameter.
The value of the parameter isn’t important, just its presence
in the server’s response.

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest
 realm="users@hundredacrewoods.com",
 qop="auth",
 nonce="dcd98bc09f81043d3a8cb935ae393db90674"

Although the qop parameter is explicitly for only one of the
advanced services (integrity protection), the Digest Authen-
tication standard introduced all the advanced authentication
features at the same time. Any client that receives the qop
parameter from a server can assume that the server supports
at least that version of the Digest Authentication specifica-
tion, so it can also assume that the server supports advanced
authentication. The qop parameter is, in effect, a convenient
indication that the server can support advanced authentica-
tion services.

In addition to indicating support for advanced authentica-
tion, the qop parameter value can define particular security
services. The Improved Digest Authentication specification
defines two cases: auth and auth-int. The first case, auth,
indicates authentication only, while the auth-int value indi-
cates authentication with integrity protection. Integrity pro-
tection is the subject of subsection 4.1.7, so we’ll defer
discussion until then. Note, though, that a server need not
select only a single value for qop. It can, if it wishes, include
both auth and auth-int in its response by using the header
qop="auth,auth-int" in its message. This tells the client
that the server is capable of supporting either, and the client
should choose one to use for the connection. Because
auth-int, which includes integrity protection as well as au-
thentication, offers stronger security than auth, clients that
are capable of supporting auth-int should always do so
when given the choice.

144 HTTP Essentials

4.1.4 Protecting Against Replay Attacks

One of the more important services available with Improved
Digest Authentication is protection against replay attacks. A
replay attack is a particular type of security attack in which
an adversary fools the server into thinking it has a valid
password, even when it doesn’t. Figure 4.5 shows a simple
scenario. In the figure, step 1 is a standard, authenticated re-
quest from the client. It includes the Authorization header
with a valid digest. Because this message is sent across the
public Internet, however, its contents are not confidential
and the adversary, as the figure indicates, observes the re-
quest. In step 2 the adversary simply sends the same request
over again to the server. It is, in effect, replaying the request.
Without knowing the user’s password, the adversary cannot
calculate a valid digest. In this case, though, the adversary
doesn’t need to calculate the digest. The client already did
that in the initial request. The attack is complete in step 3. In
that step the server verifies the digest in the request, finds it
to be valid, and returns the requested object.

Although it may seem as if the server is acting inappropri-
ately here by answering the adversary’s request, in fact the
server has little choice. Without the replay protection service
of Improved Digest Authentication, the server has no way of
distinguishing the adversary’s request from, for example, an
impatient Web user clicking on the browser’s “Refresh” or
“Reload” button.

Client Server

1
GET URI
Authorization

2"GET URI
Authorization"

3

200 OK + DataAdversary

Figure 4.5 �
In a replay attack, an adversary copies

a victim’s message and later resends it
to the same server.

Securing HTTP 145

To protect against replay attacks, the client adds another pa-
rameter to its Authorization header when it reissues its
request. The parameter is a nonce count, and its name is nc.
The value for nc is an eight-digit hexadecimal number that
increments each time the client issues the request with the
same nonce value.

GET /secret/honeypot.html HTTP/1.1
Authorization: Digest username="pooh",
 realm="users@hundredacrewoods.com",
 qop=auth,
 nonce="dcd98bc09f81043d3a8cb935ae393db90674",
 nc=00000001,
 cnonce="32cfe192fd109232aa1b8fe09d18d5efe53",
 uri="/secret/honeypot.html",
 response="dcd98bc09f81043d3a8cb935ae393db90674"

For their part in replay protection, servers must keep track of
the nc value from each client. Each time they receive a re-
quest, they make sure that the nc is greater than the last nc
value they received. If a server sees a new request with the
same nc value as before, the server should suspect a replay
attack and act accordingly.

Note that it is not possible for an adversary to capture a le-
gitimate request and just increment the nc in that request. As
we’ll see later, with Improved Digest Authentication the nc
value is part of the input to the digest. If an adversary alters
the nc value without changing the digest, the digest will no
longer be correct. And, because the adversary doesn’t know
the user’s password, that adversary cannot correctly adjust the
digest for an altered nc value.

4.1.5 Mutual Authentication

The Original Digest Authentication process gives http
servers a way to verify the identity of clients, but it doesn’t
help clients verify the identity of the server. Fortunately, di-
gest authentication in general can support mutual authenti-
cation with only a few minor modifications. For that reason,

146 HTTP Essentials

Improved Digest Authentication automatically includes
server authentication in the security process. If a server indi-
cates its support for advanced authentication by including a
qop parameter in its initial response, the client must employ
the mutual authentication process.

Server authentication is much like client authentication, only
backward. Clients send the server their own data. The server
combines that data with the user’s password, calculates a di-
gest, and returns that digest along with the requested object.
The client can then verify the digest before accepting the
object. Figure 4.6 shows the steps involved. The key step is in
step 4. It is here that the server includes the Authentica-
tion-Info parameter that proves its knowledge of the user’s
password.

The server triggers the mutual authentication process by in-
cluding a qop parameter in its 401 Unauthorized response.
If the client supports Improved Digest Authentication, it
must, according to the rules of the Digest Authentication
standard, initiate server authentication.

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest
 realm="users@hundredacrewoods.com",
 qop="auth",
 nonce="dcd98bc09f81043d3a8cb935ae393db90674"

Client Server
2

401 Unauthorized
WWW-Authenticate

1 GET URI

3
GET URI
Authorization

4
200 OK

Authentication-Info

Figure 4.6 �
With improved digest authentication,

a server can prove that it knows the
client’s password. The

Authentication-Info header carries
this proof. This service provides

greater security than the basic
authentication exchange, where only
the client actually demonstrates that

it knows the password.

Securing HTTP 147

To initiate server authentication, the client adds one more
parameter to the Authorization header in its reissued re-
quest. That parameter is cnonce, which is short for client
nonce. The cnonce parameter has the same format as the
server’s nonce parameter.
GET /secret/honeypot.html HTTP/1.1
Authorization: Digest username="pooh",
 realm="users@hundredacrewoods.com",
 qop=auth,
 nonce="dcd98bc09f81043d3a8cb935ae393db90674",
 nc=00000001,
 cnonce="32cfe192fd109232aa1b8fe09d18d5efe53",
 uri="/secret/honeypot.html",
 response="dcd98bc09f81043d3a8cb935ae393db90674"

Clients using Improved Digest Authentication also calculate
the digest slightly differently than for Original Digest Au-
thentication. Unlike with the original service, clients include
the value of their nc, cnonce, and qop parameters in the cal-
culation. Table 4.6 outlines the steps. Note that table 4.6 lists
the steps when the parties are not using protection for repeat
clients (subsection 4.1.6) and when they are not employing
integrity protection (subsection 4.1.7).

Table 4.6 Improved Client Calculation

Step Action

1 Construct a character string containing the username, realm,

and password, each item separated by a colon,

pooh:users@hundredacrewoods.com:honey, for example.

(This is string “A1.”)

2 Calculate the MD5 digest for this character string and repre-

sent the result in hexadecimal as 32 ASCII characters.

3 Construct a second character string consisting of the method

(e.g. ,GET, POST, etc.) and the URI, again separated by colons.

For example, GET:/secret/honeypot.html. (This is string

“A2.”)

4 Calculate the MD5 digest for this character string and repre-

sent the result as 32 ASCII characters.
continues…

148 HTTP Essentials

Table 4.6 Improved Client Calculation (continued)

Step Action

5 Construct a character string by combining the result from step

2, the nonce supplied by the server, the nc value, the

cnonce value, the qop value, and the result from step 4, all

separated by colons (:).

6 Calculate the MD5 digest for the character string obtained in

step 5 and represent the result as 32 ASCII characters. This

value is the digest.

Of course, the server side of mutual authentication only be-
gins with the client’s request. The server has to confirm that
it knows the user’s password when it returns its response. To
do that, the server uses the Authentication-Info header.
The header repeats the values for the qop, cnonce, and nc
parameters in the client’s request, and it includes the
rspauth parameter, which contains the digest calculated by
the server.

HTTP/1.1 200 OK
Authentication-Info: qop=auth,
 rspauth="78d98bc09f81ba3d3a8cb935a9993db90674",
 cnonce="32cfe192fd109232aa1b8fe09d18d5efe53",
 nc=00000001

The server calculates its digest value using the same proce-
dure as the client, with one small exception: Servers do not
include the method in their construction of a2. They omit
the method from the character string so that the first charac-
ter of the a2 string is a colon. Table 4.7 provides the details.
Again, note that this table assumes that neither frequent cli-
ent protection nor integrity protection is in use.

Table 4.7 Improved Server Calculation

Step Action

1 Construct a character string consisting of the username, realm,

and password, each item separated by a colon,

pooh:users@hundredacrewoods.com:honey, for example.

(This is string “A1.”)

Securing HTTP 149

Table 4.7 continued

Step Action

2 Calculate the MD5 digest for this character string and repre-

sent the result in hexadecimal as 32 ASCII characters.

3 Construct a second character string consisting of a colon fol-

lowed by the URI of the client’s request. As an example,

:/secret/honeypot.html. (This is string “A2.”)

4 Calculate the MD5 digest for this character string and repre-

sent the result as 32 ASCII characters.

5 Construct a character string by combining the result from step

2, the nonce value, the nc value, the cnonce value, the qop

value, and the result from step 4, all separated by colons (:).

6 Calculate the MD5 digest for the character string obtained in

step 5 and represent the result as 32 ASCII characters. This

value is the digest.

4.1.6 Protection for Frequent Clients

While replay protection and mutual authentication are man-
datory features of Improved Digest Authentication, the
other advanced services are optional. The optional services
are quite valuable, however, and should be used whenever
they are available. A case in point is the optional protection
for “frequent clients.” We use the term “frequent client” for
an http client that makes many requests of an http server.
Those many requests could be a product of a single, complex
session, or they may be due to clients that make the same
request many times. The problem facing those clients is that
the more they interact with a server, the more vulnerable
their password becomes.

The root of this problem is the method clients (and servers)
use to convert the password into the value, known in cryp-
tography as a key, that actually protects the data. In the ex-
amples described previously, that key is a1, and it is the
combination of three items—the username, the realm, and
the password. What’s noteworthy is that those three items

150 HTTP Essentials

do not normally change as the client makes repeated requests
of a host. Every request to the host will use the same key to
protect its authentication information.

In cryptography, the more information protected with a
given key, the less secure that key becomes. Adversaries have
more data to analyze, and the more data they have, the easier
the analysis becomes. If a client continues to use the same
key long enough, eventually an adversary will be able to dis-
cover its value.

To protect against this type of analysis, the Improved Digest
Authentication approach introduces an option that modifies
the way the key is created. This modification results in a key
that changes periodically, based on responses from the server.
By forcing the client to change keys occasionally, the server
prevents adversaries from gathering a substantial amount of
data protected by the same key, ultimately giving users
greater protection of their passwords.

Clients use the improved approach whenever the algorithm
parameter specifies MD5-sess. The server can propose this
algorithm in its original response, as below.

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest
 realm="users@hundredacrewoods.com",
 qop="auth",
 algorithm=MD5-sess,
 nonce="dcd98bc09f81043d3a8cb935ae393db90674"
WWW-Authenticate: Digest
 realm="users@hundredacrewoods.com",
 qop="auth",
 algorithm=MD5,
 nonce="dcd98bc09f81043d3a8cb935ae393db90674"

Note that in this example the server proposes both the MD5
and the MD5-sess algorithms. By proposing both options,
the server can support clients that implement only MD5.
Those clients will ignore the first WWW-Authenticate but
accept the second one. Clients that can support both MD5 and

Securing HTTP 151

MD5-sess, however, should always choose to use MD5-sess,
as that provides greater security.

Clients accept one of the proposed algorithms when they
reissue their request. The following fragment shows a client
accepting the MD5-sess algorithm.

GET /secret/honeypot.html HTTP/1.1
Authorization: Digest username="pooh",
 realm="users@hundredacrewoods.com",
 qop=auth,
 algorithm=MD5-sess,
 nonce="dcd98bc09f81043d3a8cb935ae393db90674",
 nc=00000001,
 cnonce="32cfe192fd109232aa1b8fe09d18d5efe53",
 uri="/secret/honeypot.html",
 response="dcd98bc09f81043d3a8cb935ae393db90674"

When MD5-sess is selected, table 4.8 shows the algorithm
that the clients use to calculate their digest. It differs from
the original algorithm only in step 1 (which is now, as you
can see, really two steps).

Table 4.8 Digest Calculation with MD5-sess Algorithm

Step Action

1a Construct a character string consisting of the username, the

realm, the user’s password, the nonce value, and the cnonce

value, each item separated by a colon.

1b Calculate the MD5 digest for this character string and repre-

sent the result in hexadecimal as 32 ASCII characters. (This is

string “A1.”)

2 Calculate the MD5 digest for this new character string and

represent the result in hexadecimal as 32 ASCII characters.

3 Construct a second character string consisting of the method

(e.g., GET, POST, etc.) and the URI for the method, again sepa-

rated by colons. For example, GET:/secret/honeypot.html.

(This is string “A2.”)

4 Calculate the MD5 digest for this character string and repre-

sent the result as 32 ASCII characters.

continues…

152 HTTP Essentials

Table 4.8 Digest Calculation with MD5-sess Algorithm (continued)

Step Action

5 Construct a character string by combining the result from

step 2, the nonce supplied by the server, the nc value, the

cnonce value, the qop value, and the result from step 4, all

separated by colons (:).

6 Calculate the MD5 digest for the character string obtained in

step 5 and represent the result as 32 ASCII characters. This

value is the digest.

4.1.7 Integrity Protection

Until this point, we’ve discussed how Digest Authentication
verifies the identities of the communicating parties. That is
certainly a valuable security service, but, with just a minor
modification, the same mechanisms can provide an addi-
tional security as well—integrity protection. Integrity protec-
tion gives the communicating systems a way to verify not
only each other’s identity, but also the authenticity of the
information they send.

To understand the value of this service, consider the example
of figures 4.7 and 4.8. The first figure shows the client’s view
of a transaction. The figure illustrates a standard electronic
banking transaction, and it begins after the server has sent a
WWW-Authenticate response asking the client to identify
itself. The client sends its instruction with an http POST
message, and it appears to receive the 200 OK response from
the server.

Client

1 POST URI
 Authorization
<Pay Electric Bill>

2200 OK

Server

Figure 4.7 �
A client may think that the server is

receiving and responding to its
messages, as in this figure. As figure

4.8 shows, however, something more
sinister may actually be taking place.

Securing HTTP 153

Figure 4.8 shows what’s really happening, however. As that
figure shows, an adversary has placed itself between the cli-
ent and the server, and neither the client nor the server are
aware of that fact. The adversary pretends to be the server in
its interaction with the client, and it pretends to be a client
in its interaction with the server. (Because of the adversary’s
position, this type of attack is known as a man-in-the-middle
attack in security circles.)

Notice how the adversary takes advantage of its position. It
accepts the client’s request and then modifies the message
body before passing it on to the server. The user intended to
pay an electric bill but has, unwittingly, transferred money to
the adversary instead. The insidious part of this attack is that
the adversary does not modify the Authorization header in
the client’s request. When the server calculates the digest to
verify the client’s identity, it will find that the digest matches
perfectly with the response parameter in the request.

This vulnerability is clearly a serious one. Fortunately, it is
fairly simple to protect against. The trick is in the calculation
of the digest. If the client includes the entire contents of its
message in the digest calculation, then the digest process will
protect those contents just as it protects the user’s password.
If an intermediate adversary modifies the data, then the
server’s calculation of the digest (based on the modified data)
will not match the digest in the Authorization header
(which the client calculated using the original data). Of
course, no adversary can adjust the digest value to account
for this because no adversary possesses the user’s password.

Client Server

1 POST URI
 Authorization
<Pay Electric Bill>

Adversary

2 POST URI
 Authorization
<Pay Adversary>

3200 OK4200 OK

� Figure 4.8
Without integrity protection, an
adversary may be intercepting
and modifying the contents of a
client’s messages.

154 HTTP Essentials

To trigger integrity protection as well as authentication, the
server proposes a qop value of auth-int. Notice from the
example below that the server can combine the auth-int
value with the standard auth value in one header. Unlike the
algorithm parameter, there is no need to include two sepa-
rate headers because the same algorithm value applies in
either case.

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest
 realm="users@hundredacrewoods.com",
 qop="auth,auth-int",
 algorithm=MD5,
 nonce="dcd98bc09f81043d3a8cb935ae393db90674"

When the client wishes to use integrity protection, it in-
cludes the entire entity body of its message in the input to
the digest function. As table 4.9 shows, that change affects
the value of a2, which is calculated in step 3. All the other
steps remain the same. (Note that table 4.9 does not include
the frequent client protection section 4.1.6 describes.)

Table 4.9 Client Digest Calculation for Integrity Protection

Step Action

1 Construct a character string consisting of the username,

realm, and password, each item separated by a colon,

pooh:users@hundredacrewoods.com:honey., for example.

(This is string “A1.”)

2 Calculate the MD5 digest for this character string and repre-

sent the result in hexadecimal as 32 ASCII characters.

3 Construct a second character string consisting of the method

(e.g., GET, POST, etc.), the URI for the method, and the entire

entity body, prior to any transfer encoding, again separated by

colons.

4 Calculate the MD5 digest for this character string and repre-

sent the result as 32 ASCII characters.

Securing HTTP 155

Table 4.9 continued

Step Action

5 Construct a character string by combining the result from

step 2, the nonce supplied by the server, the nc value, the

cnonce value, the qop value, and the result from step 4, all

separated by colons (:).

6 Calculate the MD5 digest for the character string obtained in

step 5 and represent the result as 32 ASCII characters. This

value is the digest.

The client includes this new digest value in its reissued re-
quest, along with an appropriate qop value. The qop parame-
ter indicates that it has accepted the server’s proposal to
include integrity protection.

GET /secret/honeypot.html HTTP/1.1
Authorization: Digest username="pooh",
 realm="users@hundredacrewoods.com",
 qop=auth-int,
 nonce="dcd98bc09f81043d3a8cb935ae393db90674",
 nc=00000001,
 cnonce="32cfe192fd109232aa1b8fe09d18d5efe53",
 uri="/secret/honeypot.html",
 response="dcd98bc09f81043d3a8cb935ae393db90674"

When the client accepts a proposal to use integrity protec-
tion, the server should do likewise. In the digest for its re-
sponse, therefore, it includes the entity body of that response
in its own digest calculation. It confirms integrity protection
with the qop value of auth-int.

HTTP/1.1 200 OK
Authentication-Info: qop=auth-int,
 rspauth="78d98bc09f81ba3d3a8cb935a9993db90674",
 cnonce="32cfe192fd109232aa1b8fe09d18d5efe53",
 nc=00000001

156 HTTP Essentials

Table 4.10 details the digest calculation. The difference is in
step 3, where the server calculates a2. Note that this table
does not include frequent client protection calculations.

Table 4.10 Server Digest Calculation for Integrity Protection

Step Action

1 Construct a character string consisting of the username,

realm, and password, each item separated by a colon,

pooh:users@hundredacrewoods.com:honey, for example.

(This is string “A1.”)

2 Calculate the MD5 digest for this character string and repre-

sent the result in hexadecimal as 32 ASCII characters.

3 Construct a second character string consisting of a colon fol-

lowed by the URI of the client’s request, followed by another

colon and then the entire entity body prior to any transfer

encoding. (This is string “A2.”)

4 Calculate the MD5 digest for this character string and repre-

sent the result as 32 ASCII characters.

5 Construct a character string by combining the result from

step 2, the nonce value, the nc value, the cnonce value, the

qop value, and the result from step 4, all separated by colons

(:).

6 Calculate the MD5 digest for the character string obtained in

step 5 and represent the result as 32 ASCII characters. This

value is the digest.

4.2 Secure Sockets Layer

Although the http’s own procedures offer some important
security services, they do not provide complete security for
the systems’ communications. In particular, they offer no way
to encrypt the messages to protect the parties’ privacy. That’s
a significant disadvantage for the World Wide Web. The
Web uses the public Internet as its network, and communi-
cations traffic on the public Internet is just that—public. Be-
cause adversaries are free to observe messages that travel
between clients and servers, encrypting those messages so

Securing HTTP 157

that adversaries cannot understand them is critical to appli-
cations such as electronic commerce. Otherwise, valuable and
private information such as credit card numbers could be
easily intercepted, as figure 4.9 illustrates.

Fortunately, the Web has developed a technology to provide
the necessary confidentiality for communication traffic. That
technology is not an enhancement to http but, rather, an
entirely separate protocol known as the Secure Sockets Layer
(ssl). Netscape Communications designed ssl for inclusion
in its Web browser, and nearly all Web servers and Web
browsers have followed suit. By now, ssl is by far the most
popular network security technology deployed in the world.

This section provides a brief introduction to the Secure
Sockets Layer protocol. It first shows the relationship be-
tween ssl and other protocols, as well as its typical imple-
mentation environment. The section then introduces public
key cryptography, the crucial cryptographic technology on
which ssl is based. The section then shows ssl in operation.

4.2.1 SSL and Other Protocols

As a separate protocol, ssl is available to all applications that
use tcp for transport. Figure 4.10 shows its position in the
standard protocol stack.

Notice that in the standard case http communicates directly
with tcp while, when ssl is involved, http communicates
only with ssl, and ssl, in turn, communicates with tcp.

Client Server

POST URI
<Credit Card = 1234 ...>

Adversary

� Figure 4.9
Without the Secure Sockets Layer (or
something equivalent), an adversary
can eavesdrop on a communication
and uncover confidential information.

158 HTTP Essentials

In any communications, particularly the Web, the client de-
cides whether to use ssl or not. For the specific case of ssl in
combination with http, the standard uri scheme “https:”
indicates a secure session. Users may enter the full uri di-
rectly in a browser, or they may be redirected to a secure ses-
sion by a link. In either case, most browsers provide a
convenient way for users to tell if the session is secure. Figure
4.11 shows how Microsoft’s Internet Explorer shows a secure
site. Notice the padlock icon in the lower right corner of the
window.

Although the uri scheme allows explicit specification of a
tcp port, http over ssl has a default port of 443. This ap-
proach does highlight a limitation with ssl. Each application
that has the option of using ssl needs two separate default
tcp ports: one for standard, non-secure operation (e.g.,
http’s port 80) and a separate port for secure communica-
tions (such as http’s port 443).

TCP

IP

Network Technology

HTTP

Standard HTTP HTTP Secured with SSL

Network Technology

IP

TCP

SSL

HTTP

Figure 4.10 �
The SSL protocol inserts itself

between an application like HTTP and
the TCP transport layer. TCP sees SSL

as just another application, and HTTP
communicates with SSL much the

same as it does with TCP.

Securing HTTP 159

4.2.2 Public Key Cryptography

Public key cryptography, on which ssl relies, solves a funda-
mental problem that exists in conventional cryptography: key
management. With conventional cryptography, both com-
municating parties share a single secret value, known as the
key. In the case of http security discussed in the last section,
that key is the user’s password. Both the client and the server
need to know the password before authentication or integrity
protection can succeed.

Keys that must be shared by communicating parties present a
serious problem to any security system. How do the parties
agree on and exchange the value of the key? It’s usually not
acceptable to simply send the key using the same
communication path that the key will later secure. After all,

� Figure 4.11
The padlock icon at the lower right of
the browser’s window indicates that
the session is secured with SSL. Other
browsers use similar icons to indicate
secure communications.

160 HTTP Essentials

if there are adversaries in that path waiting to intercept
communications, they can just as well intercept the key. And
if an adversary possesses the secret key, then securing the
communication is not worthwhile.

Public key cryptography solves this problem by relying on
two separate keys. If one key is used to encrypt information,
the other key is required to decrypt it. The keys obviously
share a complex mathematical relationship, but it is not pos-
sible, knowing only one of the pair, to discover or calculate
the other.

Having a pair of keys rather than a single key makes possible
a whole new method of key distribution. One of the keys can
be freely published. A server, for example, can send one of its
keys, the key known as its public key, to any client that asks
for it. Clients can take the key, use it to encrypt information,
and send the encrypted information to the server. The server
then uses its other key, its private key, to decrypt the client’s
information. In such a scheme there is no danger in revealing
the public key to an adversary. Knowing the public key does
not let an adversary decrypt the confidential information.

Public key cryptography is useful for more than just encryp-
tion; it also provides a powerful method of authentication.
Public key authentication reverses the roles of the two keys
that make up the key pair. A client that wishes to prove its
identity, for example, begins with known data and encrypts it
using its private key. Anyone with the client’s public key can
then decrypt the information. If it matches the original
known value, then the client is certain to have been the one
to encrypt it (because only the client knows its private key).

There is one factor that makes public key cryptography
slightly less convenient than the description so far would
imply. The complication is ensuring the authenticity of pub-
lic keys. To return to the earlier example, suppose a client
asks for a server’s public key. How can the client be sure that
the public key really does belong to the server and not an

Public Key Disadvantages

Public key technology has truly

revolutionized cryptography by

eliminating the vulnerabilities

inherent in distributing traditional

cryptographic keys. Unfortunately,

the technology does have one

noteworthy disadvantage: It’s

slow. Public key encryption

algorithms are much more

complex than encryption

algorithms that rely on traditional

keys shared by both parties. This

additional complexity requires

significantly more processing

power and time, resources that

can be at a premium in

applications such as large-scale

electronic commerce Web sites.

Fortunately, most public key

implementations, including the

SSL protocol, adopt an elegant

approach that provides the

benefits of public key encryption

without much of its costs. Instead

of encrypting an entire

communications session using

public key algorithms, one of the

parties creates—on the fly—a

traditional shared key. That party

then uses a public key algorithm

to encrypt that key and send it

safely to its partner. The two

parties can then use traditional

encryption algorithms to protect

their communications.

Securing HTTP 161

adversary posing as the server? Public key authentication by
itself won’t help, because that’s effective only after the client
is sure of the server’s public key. Public key cryptography in
general, and ssl in particular, resolves this problem by using
public key certificates and certificate authorities. A certificate
authority is a party that both clients and servers trust, and
one for whom they know the legitimate public key. To make
its own public key trustworthy, a server presents it to the cer-
tificate authority, along with suitable proof of the server’s
identity. The certificate authority (ca) then encrypts the
server’s public key using its own private key, a process known
as signing. The resulting signed public key is stored in a digi-
tal certificate. It is this digital certificate, not just its public
key, which the server sends to clients. Those clients who
know the certificate authority’s public key can verify that the
ca did indeed certify the server’s public key.

Of course, that still leaves one problem. How do clients and
servers learn the public keys of the certificate authority?
They can’t learn them over an insecure network, as that
would allow an adversary to pose as a ca. In this case there is
no magic available; communicating parties must learn of the
ca through a means other than the network. In the case of
the Web, browsers and servers are preloaded by their manu-
facturer with the public keys of important certificate authori-
ties. Figure 4.12 shows some of authorities that Netscape pre-
installs in its browser.

4.2.3 SSL Operation

The Secure Sockets Layer protocol offers three important
security services to applications that use it. Those services are
authentication, message integrity, and confidentiality. Re-
spectively, those services provide confident answers to three
questions: “With whom am I communicating?”, “Have I re-
ceived precisely the information that the other party sent
(and vice versa)?”, and “Have we ensured that a third party
cannot eavesdrop on the communications?”

162 HTTP Essentials

The ssl protocol can provide these services in several ways;
however, when securing http communications, particularly
on the Web, two scenarios are especially common. Typical
electronic commerce sites employ one scenario: ssl authenti-
cates the Web server and encrypts and protects communica-
tions between the server and browser. Some specialized sites
use the second scenario: In addition to authenticating the
server, those sites use ssl to authenticate the client as well.

In both cases the communicating parties exchange a
sequence of ssl messages before transferring http
information. Figure 4.13 shows the sequence of messages for
server-only authentication. Table 4.11 describes each of the
messages in the exchange.

Once the nine-step negotiation is complete, application pro-
tocols (such as http) can begin exchanging their own mes-
sages securely. In the case of http, the client typically
follows the ssl negotiation with a GET or POST request. Note
that ssl adds its own headers to each application message.

Figure 4.12 �
Commercial Web browsers are

preconfigured with a list of trusted
certificate authorities.

Securing HTTP 163

These headers keep the two parties synchronized, and they
provide message integrity protection.

The preceding ssl negotiation is an effective way to authen-
ticate the server, and it establishes a secure communications
channel between the server and client. It does not, however,
authenticate the identity of the client. That’s because, in
many applications, ssl isn’t needed to verify the client’s iden-
tity. Consider electronic commerce applications, for example.
In a typical transaction the customer provides credit card
information, and it is a valid credit card number that vali-
dates the user. Other sites ask users to select usernames and
passwords, as that combination is far easier for humans to
manage than public key technology. In such environments,
cryptographic authentication of the client is unnecessary.

Client Server

1 Client Hello

2Server Hello

3Certificate

4Server Hello Done

5 Client Key Exchange

6 Change Cipher Spec

7 Finished

8Change Cipher Spec

9Finished

� Figure 4.13
Establishing an SSL session for the first
time requires the exchange of several
messages. In step 1 the client
introduces itself and its capabilities;
the server responds in step 2 by
selecting the parameters for the
session. It then sends the client its
public key certificate in step 3, and it
ends its part of the initial exchange in
step 4. With step 5, the client picks a
secret key for the session, encrypts it
using the server’s public key, and
sends it to the server. Since only the
server knows its private key, only the
server can decrypt the secret key. In
the remaining steps, both systems
conclude the negotiation phase and
activate the session’s security.

164 HTTP Essentials

Table 4.11 Basic SSL Session Negotiation

Step Action

1 Client sends Server a Client Hello message. In this message the client iden-

tifies the versions of SSL that it supports (the latest version is 3.0), and it

proposes a series of security capabilities it would like to employ for the

communication. These security capabilities are known as Cipher Suites, and

they identify parameters such as specific cryptographic algorithms and

encryption key sizes.

2 Server responds with a Server Hello message. In this message the server

selects both the SSL version and the security capabilities for the commu-

nication. The server must pick from among those proposed by the client.

3 The Server sends a Certificate message, which conveys its public key cer-

tificate to the client. Note that the client is responsible for ensuring that

this certificate is valid, that it was issued by a trusted authority, and that it

identifies the server (e.g., the Web site) that the client or user intended to

contact.

4 The Server sends a Server Hello Done message to indicate that it has con-

cluded its part of the initial SSL negotiation.

5 The client responds with a Client Key Exchange message. This message

contains cryptographic keys that will be used to encrypt the communica-

tions. The keys themselves are encrypted using the server’s public key

(obtained from the Certificate message in step 3), so that only the server

will be able to decipher and retrieve these keys.

6 The client sends a Change Cipher Spec message. This message is a signal

that the client will encrypt all subsequent communications using the cryp-

tographic keys.

7 The client sends a Finished message, which is encrypted according to the

negotiated cryptographic keys and algorithms. The server’s ability (or in-

ability) to successfully decrypt this message ensures that the negotiation

has been successful.

8 The server sends its own Change Cipher Spec message. As with the client,

this message signals that future messages will be encrypted.

9 The server concludes the SSL negotiation with a Finished message of its

own which, as is the case for the client’s Finished message, is encrypted

according to the negotiated parameters. Once the client has successfully

decrypted this message, it is assured that the negotiation has succeeded.

Securing HTTP 165

In some specialized implementations, however, crypto-
graphic authentication is useful. The ssl protocol supports
this type of operation as well. Figure 4.14 shows the message
exchange for client authentication. The figure highlights
those messages that differ from typical server-only authenti-
cation. Table 4.12 describes those steps.

Client Server

1 Client Hello

2Server Hello

3Certificate

5Server Hello Done

7 Client Key Exchange

9 Change Cipher Spec

Change Cipher Spec

Finished

11

Finished10

12

4
Certificate

Request

6 Certificate

8 Certificate Verify

� Figure 4.14
Clients can also use SSL to
authenticate themselves to the
servers. The server requests such
authentication by sending a
certificate request, as in step 4. The
client honors this request in step 6,
and then, in step 8, it sends a special
message that verifies its knowledge of
the corresponding private key. The
rest of the exchange is the same as in
figure 4.13.

166 HTTP Essentials

Table 4.12 Additional Steps for Client Authentication

Step Action

4 The server sends a Certificate Request message after sending its

own certificate. This message tells the client that the server

wants to authenticate the client using SSL, and it is the trigger

for SSL’s client authentication.

6 The client provides its public key certificate in a Certificate mes-

sage.

8 The client sends a Certificate Verify message, in which it en-

crypts some known information using its private key. The server

can decrypt the information using the public key from the cli-

ent’s certificate. Successful decryption verifies that the client

truly possesses the private key corresponding to the public key

certificate.

There are two important items to note about client authenti-
cation using ssl. First, the client has to possess a public key
certificate, and it must be one that the server can trust. Often
the server itself (or the same organization that operates the
server) issues client certificates. Secondly, ssl client authen-
tication tends to authenticate the system acting as the client;
it is not normally effective at authenticating the user of that
system. Because public key certificates are far too complex
for humans to conveniently store and remember, clients rely
on the computer systems to store and manage them, and
computer systems are frequently vulnerable to unauthorized
users. For this reason electronic commerce sites do not nor-
mally use ssl client authentication to validate their users.

Something that figures 4.13 and 4.14 highlight is that ssl ne-
gotiation can add significant overhead to a communication.
Not only must the parties exchange several ssl messages,
they must perform processor- and time-intensive public key
encryption. (See the “Public Key Disadvantages” sidebar on
page 160.) For a Web site struggling to serve millions of us-
ers, ssl overhead can have a significant impact on perform-
ance. Using http persistence helps, as it lets clients issue
multiple http requests without renegotiating the ssl pa-

Securing HTTP 167

rameters. The ssl protocol also provides its own form of per-
sistence, however, which may be useful for applications that
do not support persistence or in cases where persistence is
impractical. The approach is relatively straightforward. With
each negotiation, the server may, if it chooses, assign a Ses-
sion id to the results. When the client later wants to reestab-
lish secure communications, it can include the Session id in
its Client Hello message. If the server agrees to reuse the
previously negotiated parameters, it replies with the same
Session id in its Server Hello. Figure 4.15 illustrates the
complete exchange, and table 4.13 describes each step.

Table 4.13 Resuming a Previously Established SSL Session

Step Action

1 The client sends a Client Hello message containing a previously

established SSL Session ID. Note that the client should also in-

clude a full set of proposed cryptographic parameters in case

the server decides not to reuse the session.

2 The server responds with a Server Hello message also contain-

ing the Session ID, indicating that it is willing and able to resume

the SSL session.
continues…

Client Server

1 Client Hello

2Server Hello

5 Change Cipher Spec

6 Finished

3Change Cipher Spec

4Finished

� Figure 4.15
If they have previously established an
SSL session, clients and servers can
reuse that session’s parameters and
avoid a full SSL negotiation process.
The client proposes to resume an
earlier session in its hello message. If
the server agrees, it accepts the
proposal in its hello reply.

168 HTTP Essentials

Table 4.13 Resuming a Previously Established Session (continued)

Step Action

3 The server follows its Server Hello with an immediate Change

Cipher Spec. This message signals the resumption of the secure

session.

4 The server concludes its part of the negotiation by sending a

Finished message, which is encrypted according to the session

parameters. The client decrypts this message to make sure that

the session resumption has succeeded.

5 The client sends its own Change Cipher Spec message to indi-

cate that it will begin using the negotiated session parameters.

6 The client concludes the handshake with a Finished message,

which is encrypted. The server decrypts this message to verify

that the session has resumed successfully.

4.3 Transport Layer Security

The Secure Sockets Layer protocol was designed by Net-
scape Communications. And, although Netscape did involve
the Internet community in its development, ssl technically
remains a proprietary protocol. To ensure that Web security
can be supplied by a true, open standard, the Internet Engi-
neering Task Force (ietf) took over responsibility for en-
hancements and updates to ssl and, as part of the transition,
gave the protocol a new name: Transport Layer Security, or
tls.

4.3.1 Differences from SSL

Despite the new name, tls is really nothing more than the
next revision of ssl. Indeed, it is a relatively minor revision.
Its designers acknowledge the modesty of their changes in
the protocol version number; tls messages indicate their
protocol version as 3.1. (The last version of ssl is version 3.0.)

Other than a new version number, tls makes only two real
changes to ssl. First, it almost doubles the number of error

Version Number Confusion

Although the protocol messages

advertise a protocol version of

“3.1,” the TLS protocol itself is

officially known as TLS version 1.0.

That’s because even though TLS is

effectively version 3.1 of SSL, it is

technically the first version of

Transport Layer Security.

Presumably, version 2 of TLS will

advertise itself as protocol version

“4.0” in its messages. This

approach is perhaps an

unfortunate one, as it may cause

confusion for the life of the

protocol. The IETF could resolve

this confusion by making the next

version of TLS version 4 rather

than version 2.

Securing HTTP 169

message types; this increase should help identify and isolate
interoperability problems. Second, tls makes slight adjust-
ments to the complex cryptographic calculations to eliminate
some minor theoretical weaknesses.

4.3.2 Control of the Protocol

The real significance of the migration from ssl to tls is
control of the protocol. With tls that control rests with an
international standards organization, the ietf, rather than
Netscape. The ietf provides a much more open and under-
standable process for adding to tls, particularly in its cipher
suites. A cipher suite specifies the cryptographic parameters
of a secure communication, including elements such as the
encryption algorithm and key size. The ietf has already ac-
cepted proposals to increase the number of cipher suites sup-
ported by tls. Those proposals adopt existing security
systems such as Kerberos, and they add advanced new tech-
nology such as elliptic curve cryptography, technology that is
particularly well suited for low-power devices such as mobile
phones and personal digital assistants. These advances will
help bring tls—and with it secure http—to all manner of
devices and systems.

 4.3.3 Upgrading to TLS within an HTTP Session

There is another significant effect of ietf control over tls.
Because the ietf also controls http, much closer coordina-
tion between the two protocols is possible. Indeed, such co-
operation is already apparent. One of the problems with ssl
is that it requires a separate tcp port for each application it
secures. That is why the Web uses port 80 for standard http
and port 443 for http secured by ssl. With tls, however, it
is now possible to support both secure and non-secure opera-
tion on the same port. This conserves tcp port numbers,
which can be a limited resource on many systems.

To support a single port the communicating systems begin
their http connection without security. Then, while the

170 HTTP Essentials

connection remains active, they upgrade to a secure session.
The upgrade can be initiated either by the client or the
server. The client begins the upgrade process by including
the Upgrade and Connection headers in its message, as in
the following example.

GET http://www.bank.com/acct.html?7493948 HTTP/1.1
Host: www.bank.com
Upgrade: TLS/1.0
Connection: Upgrade

The server can respond to this request with a 101 status.

HTTP/1.1 101 Switching Protocols
Upgrade: TLS/1.0, HTTP/1.1
Connection: Upgrade

After this exchange, the two parties carry out a tls hand-
shake negotiation. Once that has succeeded, the server re-
plies to the client’s original GET request.

One potential problem with this approach is that the server
can choose not to perform the requested upgrade. In that
case, it will still respond to the client’s GET request; the re-
sponse, however, will not be secured by tls. Because of this
possibility, clients should include the upgrade request directly
in a GET message only if it is acceptable for the server to re-
spond to the GET without security. In effect, the client’s re-
quest to upgrade to tls is optional.

To avoid this behavior, the client can request the upgrade
before it issues a critical GET request. Clients should also do
this if the GET message itself includes data that should be
kept confidential. To upgrade before committing to a GET or
POST exchange, clients can use an OPTIONS message.

OPTIONS * HTTP/1.1
Host: www.bank.com
Upgrade: TLS/1.0
Connection: Upgrade

Securing HTTP 171

The server responds as before, either accepting the upgrade
or not. This time, however, the client has the benefit of the
server’s response before it sends a GET message. If the server
does not upgrade to tls, the client can simply terminate the
connection without sending a GET.

A server can indicate its willingness to upgrade to tls in any
response other than a 101 or 426. It simply includes the Up-
grade and Connection headers in that response.

HTTP/1.1 200 OK
Upgrade: TLS/1.0, HTTP/1.1
Connection: Upgrade

Actual initiation of the upgrade is still up to the client, and
the client does so using either of the techniques above. The
client will know in advance, however, that the server can
support a tls upgrade.

If the server wishes to force the client to initiate an upgrade,
it can respond with a 426 Upgrade Required error status.

HTTP/1.1 426 Upgrade Required
Upgrade: TLS/1.0, HTTP/1.1
Connection: Upgrade

<HTML>
<BODY>
<P>Secure connection required. Please follow <A
HREF="https://www.bank.com/acct.html?749394889300"
>this link.
</BODY>
</HTML>

Notice that the message body includes an html page that
describes the problem for a human user and gives that user
an alternative link to click. Any 426 response should include
both these items to support Web browsers that may not un-
derstand the upgrade request.

If the client does understand the upgrade request, it can ini-
tiate the upgrade as above. Note that the client does not im-
mediately begin the tls handshake.

172 HTTP Essentials

One final issue for tls upgrades is support for proxy servers.
If a client used the approach described above when commu-
nicating through a proxy, it would secure the communication
only to that proxy. Once the data passed beyond the first
proxy, it would no longer be secured by tls. Because a client
requesting a tls upgrade presumably wants to establish the
tls session with the ultimate host, not with an intermediate
proxy, it should use the CONNECT method to create a tunnel to
the final host. Once the tunnel is established, the tls up-
grade and handshake can proceed.

4.4 Secure HTTP

At the same time Netscape was developing the initial version
of the Secure Sockets Layer protocol, other engineers were
working on an alternative security protocol known as secure
http. Although ssl has clearly established itself as the pre-
ferred approach for securing http sessions on the Web, Se-
cure http has been published as an experimental ietf
standard.

Secure http provides the same security services as ssl: au-
thentication, message integrity protection, and confidential-
ity (through encryption). Unlike ssl, however, secure http
messages have the same general syntax as http. As the fol-
lowing example shows, the protocol is referred to as Secure-
HTTP, the version is 1.4, and the main method is SECURE.

SECURE * Secure-HTTP/1.4
Content-Type: message/http
Content-Privacy-Domain: CMS

Secure http itself defines four headers. It also defines sev-
eral additional options for http messages that it encapsu-
lates. Table 4.14 lists the secure http headers; table 4.15 lists
the http options that are not related to cryptographic nego-
tiations, and table 4.16 lists the http options that the parties
use to negotiate cryptographic parameters.

Securing HTTP 173

Table 4.14 Secure HTTP Headers

Header Use

Content-Privacy-Domain Indicates the format of the crypto-

graphic information; either CMS for the

IETF’s Cryptographic Message Syntax or

MOSS for MIME Object Security Services

used with secure email.

Prearranged-Key-Info Identifies keys that have been previously

established between the parties; this

header allows Secure HTTP to support

traditional, shared key cryptography as

well as public key cryptography.

Content-Type Identifies the type of content protected

by Secure HTTP; all Secure HTTP mes-

sages have the content-type of mes-
sage/http.

MAC-Info Carries a message authentication code

for the message, which is used to pro-

vide message integrity protection.

Table 4.15 HTTP Options for Secure HTTP

Option Use

Key-Assign Assigns an identifier to a cryptographic

key (so that key may be conveniently

referenced later).

Encryption-Identity Identifies the party for whom a message

should be encrypted.

Certificate-Info Identifies a public key certificate.

Nonce Contains a random value used to vary

message contents and therefore im-

prove security.

Nonce-Echo Returns a previously provided nonce

value.

174 HTTP Essentials

Table 4.16 Secure HTTP Cryptographic Negotiation Options

Option Use

SHTTP-Cryptopts Contains general cryptographic

options.

SHTTP-Privacy-Domains Indicates the format of the cryp-

tographic information; either

CMS for the IETF’s Crypto-

graphic Message Syntax or

MOSS for MIME Object Security

Services used with secure email.

SHTTP-Certificate-Types Identifies the format of public

key certificates.

SHTTP-Key-Exchange-Algorithms Identifies a cryptographic algo-

rithm used to exchange keys.

SHTTP-Signature-Algorithms Identifies a cryptographic algo-

rithm used to digitally sign mes-

sages.

SHTTP-Message-Digest-Algorithms Identifies a cryptographic algo-

rithm used to calculate the di-

gest of a message.

SHTTP-Symmetric-Content-Algorithms Identifies a cryptographic algo-

rithm used to encrypt message

contents.

SHTTP-Symmetric-Header-Algorithms Identifies a cryptographic algo-

rithm used to encrypt message

headers.

SHTTP-Privacy-Enhancements Lists privacy enhancements

desired or used for a message.

Your-Key-Pattern Identifies a cryptographic key

using a general, pattern-

matching syntax.

Secure http, like ssl, has its own protocol designator for
urls. In the case of secure http, that designator is “shttp”
(which, unfortunately, is close enough to ssl’s designator of
“https” to create some confusion). Because secure http uses
the same syntax as http, however, secure http does not

Securing HTTP 175

require its own default tcp port. Instead, Secure http and
http messages can be safely intermingled on the same port,
port 80 by default.

177

CHAPTER 5

Accelerating HTTP —
Improving Users’ Web Experience

Not long after the first Web sites appeared on the Internet,
engineers began looking for ways to make those sites per-
form faster. Their efforts have led to several approaches that
accelerate http, including load balancing, advanced caching,
ssl acceleration, and tcp multiplexing. This chapter takes a
more detailed look at the technologies behind those accelera-
tion techniques.

The two most widely used technologies for accelerating
http are load balancing and caching, and these two topics
form the bulk of this chapter. The final sections, however,
describe some additional techniques for improving Web per-
formance—tcp multiplexing and ssl acceleration.

5.1 Load Balancing

As the popularity of early Web sites grew and the demand
on their servers increased, site administrators quickly discov-
ered that load balancing was a simple way to improve their

178 HTTP Essentials

sites’ scaleability and performance. The concept of load bal-
ancing is quite simple: Let many different Web servers act as
a single Web site. As Web technology has matured, load bal-
ancing has itself grown more complex and more powerful.
This section considers three key aspects of load balancing
implementations. The first consideration is the location of
the servers to be balanced. Next we look at the various ways
that an implementation can direct the client to an appropri-
ate server. The final section describes how load balancing
implementations decide which server is appropriate for a
particular request.

5.1.1 Locating Servers

The simplest load balancing configuration places multiple
servers right next to each other, as in figure 5.1. http re-
quests from the Internet are directed to one of these local
servers. Even in this simple configuration, load balancing
offers significant benefits. As traffic demand increases, the
site administrator simply adds more servers. The new servers
reduce the load on the existing systems, improving their per-
formance and, ultimately, the end user’s experience. Local
load balancing can also improve a site’s reliability, particularly
if the implementation’s technique for allocating servers can

Internet

Web
Server

Web
Server

Web
Server

Figure 5.1 �
Load balancing distributes requests

among many physical servers. The
Web site’s overall performance
becomes the sum of that of the

physical servers.

Accelerating HTTP 179

automatically account for failed systems. And even if adding
or deleting servers requires manual configuration, load bal-
ancing facilitates taking servers out of service for scheduled
maintenance.

Local load balancing focuses on the Web servers, and most
of its benefits are targeted to servers. (Of course, any im-
provement of server performance also improves the user’s
experience, so clients can gain considerable indirect benefit
from local load balancing.) A different type of load balancing
implementation, however, provides direct benefits to Web
clients. That implementation is frequently called global load
balancing.

With global balancing, as figure 5.2 shows, the various Web
servers are distributed around the Internet; unlike the case
for local load balancing, the servers do not share the same
facilities and infrastructure.

The primary advantage of global load balancing is that it
allows the client to interact with a server that is physically
nearby. This benefit is particularly important for interna-
tional Web sites. End users in Europe can retrieve their con-
tent from servers in Europe, while clients in the Pacific
communicate with servers in the same region. To appreciate
the significance of this optimization, consider the limits of

Internet

Web ServerWeb Server

Web Browser

Web Browser

� Figure 5.2
Global load balancing locates servers
at different locations around the
Internet. In addition to combining the
performance of multiple servers into
one site, this architecture allows
clients to communicate with the
nearest server, improving the site’s
responsiveness to diverse clients.

180 HTTP Essentials

basic physics. The speed of light in fiber imposes a round trip
delay of nearly 100 milliseconds for traffic that must cross
the Atlantic Ocean. Yet it takes only about 60 milliseconds
to deliver a typical Web page over a dial-up isdn connection;
for adsl connections the delivery time is around 10 millisec-
onds. Clearly, moving the content closer to the end user can
have a significant effect on that user’s experience.

Global load balancing provides benefits to more than just the
end user. Servers also benefit. By distributing servers across
the Internet, the Web site reduces the bandwidth require-
ments of any individual site. Global load balancing also im-
proves site availability. While local load balancing can be
used to route around failed servers, it offers no protection
against the failure of an entire physical site. Unfortunately,
site failures are not necessarily rare events, as anything from a
power failure to loss of network connectivity can effectively
shut down a location. Global load balancing, however, pro-
tects against a physical site failure; if one of the servers is un-
available, another server, distantly located, can still function.

5.1.2 Distributing Requests

Once a Web site has established multiple servers for load
balancing, the site must then determine how to distribute
http requests among those servers. Several approaches are
possible, including Domain Name Service responses, http
redirects, and traffic interception.

The simplest way to distribute http requests to multiple
servers is to use the Domain Name System (dns). The dns
protocol translates the host name part of a url into an ip
address. To send requests to different Web servers, the dns
server simply needs to respond with different ip addresses.
As figure 5.3 indicates, in this configuration the load balancer
acts directly as the dns server. dns requests come to the bal-
ancer, and it replies with the ip address for that particular
request.

Accelerating HTTP 181

Another approach to redirection is to use http itself. The
load balancer acts as a Web server itself. Instead of returning
pages, however, the server responds to requests with http
messages that point the client to a new server. Figure 5.4
shows the general operation. Load balancers commonly re-
turn a 302 status, with the Location: header pointing to
the real Web server for the client.

Global load balancers can use both dns responses and http
redirection to distribute requests to different Web servers. A
third technique, traffic interception, is effective only for local
load balancing. Traffic interception requires the load balan-
cer to be positioned between the Internet and the Web serv-
ers, as figure 5.5 shows.

Internet

3

Web Server

GET

4
200 OK

Web Server

Web Browser

1 DNS Query

2DNS Response

Load Balancer

Internet

3

Web Server

GET

4

200 OK

Web Server

Web Browser

1 GET

2302 Found

Load Balancer

� Figure 5.3
A global load balancing system may
act as a DNS server for a site. It can
vary the IP address in its DNS
responses based on the location of
the requesting client.

� Figure 5.4
A global load balancing system can
also act as the primary HTTP server for
a site. In that role it uses HTTP
redirection to route clients to the
actual Web site.

182 HTTP Essentials

Because all http requests pass through the load balancer, it
has complete control over their ultimate destination. Traffic
interception does place much greater demands on the load
balancer, however. With dns responses and http redirec-
tion, the load balancer can “redirect and forget.” Once it
sends a request to a particular server, the load balancer
doesn’t have to keep track of the request or its session. With
traffic interception, however, the load balancer is, in effect,
pretending to be the Web server. To keep from confusing the
client, the load balancer must maintain that pretense for the
life of the client’s session. And, in the case of communica-
tions encrypted with ssl, the load balancer may have to track
activity across multiple http sessions.

5.1.3 Determining a Target Server

The final element of a load balancing strategy is determining
which Web server is best suited to respond to a particular
request. As the technology has developed, load balancers
have gotten more and more sophisticated in their ability to
make that decision.

Internet

Web
Server

Web
Server

Web
Server

Load
Balancer

Figure 5.5 �
Traffic interception, sometimes called

layer 4 or layer 7 switching, acts
transparently to HTTP clients and

servers. Requests passing through the
load balancer are routed directly to an

appropriate server.

Accelerating HTTP 183

The earliest load balancing implementations used a simple
round-robin algorithm to route the requests. With a round
robin, the first request is sent to host a; the next request is
sent to host b, and so on. The process continues through all
the Web servers and then starts over again at server a. This
approach is particularly easy to implement with dns-based
redirection. Most dns servers can be configured to use a
round-robin algorithm in returning ip addresses. In such a
configuration, a standard, “off-the-shelf ” dns server can act
as a load balancer.

With a round-robin algorithm, the load balancer need not
consider the Web servers or the requesting clients. It needs
only to remember the last redirection with which it, itself,
responded. That approach clearly has some significant limi-
tations, however. Round-robin load balancers don’t track,
and therefore don’t know, the status of individual servers. If a
Web server fails or loses connectivity to the Internet, the
load balancer won’t know that and will continue to send cli-
ents its way. Also, the round-robin approach is effective only
if each request places a similar burden on the server. If some
requests require more server resources than others, a round-
robin load balancer, not knowing any better, may send the
bulk of those requests to one server, loading it disproportion-
ately.

More advanced load balancers, particularly local load balan-
cers using traffic interception, can take a more active interest
in the health of the Web servers they support. Because such
balancers see all the requests and responses from the Web
servers, they are in an excellent position to evaluate the
health of individual servers and adjust their redirection ap-
propriately. Table 5.1 lists some of the factors a traffic inter-
ception load balancer can consider in determining a target
server.

184 HTTP Essentials

Table 5.1 Monitoring Web Server Health

Factor Approach

Passive Monitoring Load balancer measures the traffic flowing to

and from individual servers to estimate their

current load and health.

Active Requests Load balancer issues its own requests to the

servers periodically; these requests can be as

simple as an Internet Control Message Protocol

(ICMP) echo request (ping) or as sophisticated

as a request for an actual Web page.

Network Monitoring Load balancer uses a standard network man-

agement protocol such as the Simple Network

Management Protocol (SNMP) to gather per-

formance statistics for each server.

System Monitoring Load balancer uses a system monitoring proto-

col (such as Windows 2000 performance moni-

tor) to gather performance statistics for each

server.

Global load balancers, because they manage a distributed set
of Web servers, have an even greater opportunity to distrib-
ute traffic. In addition to maintaining its own information
and monitoring the status of the Web servers, a global balan-
cer can take the client itself into account in determining a
request’s target. Indeed, that’s the main point of global load
balancers that strive to match a client to the best server for it.
The technique may seem a bit complicated, but, taken a step
at a time, it is straightforward. Figure 5.6 illustrates the proc-
ess. In the figure, we’ve assumed that the global load balancer
uses http redirection to send the client to the best server.

The process begins in step 1, when the Web browser requests
a Web page. This request goes to the global load balancer,
which is acting as a virtual Web server for the Web site. In
step 2, the global balancer communicates with the local load
balancers at all of the physical sites. The communication is a
probe request; in effect, the global load balancer is asking
each local load balancer to measure its distance to the client.

Accelerating HTTP 185

Note that there are no standard communication protocols for
step 2 (or the response in step 5), only proprietary ones. Con-
sequently, the global and local load balancers usually must be
from the same vendor.

In the next step, each local load balancer assesses its per-
formance relative to the client. For clarity, figure 5.6 shows
only the actions of the left-most local balancer, but the local
balancer on the right takes similar actions. In the figure, the
local balancer issues an icmp echo request to the client; in
step 4 the client replies with an icmp echo response. The
time between the request and the response can serve as an
estimate of the round-trip latency between the client and the
local balancer. Other approaches are possible as well. The
local balancer could initiate a trace route to the client to
measure the number of intervening routers. Alternatively, the
local balancer could consult its own routing information
(e.g., Border Gateway Protocol paths) to appraise the net-
work topology between it and the client. In all cases, the lo-
cal load balancers report their results to the global load

Internet

Web
Server

Web
Server

3

Web Browser

1 GET

Global Load
Balancer

Web
Server

Web
Server

Local
Load

Balancer

2

Probe
Request

Ping

4

Pong

5Probe
Response

6 302 Found

7

GET

Local
Load
Balancer

� Figure 5.6
Sites can combine local and global
load balancing in a coordinated
manner. In this example, the global
balancer queries the local load
balancers when it receives a client’s
request; the query asks each local
balancer to assess the performance
between it and the client. The local
load balancers report the results back
to the global balancer so it can
redirect the client appropriately.

186 HTTP Essentials

balancer in step 5. From these responses the global load bal-
ancer identifies the best server for the request and, in step 6,
redirects the client there with an http 302 status. With a
new resource identifier, the client reissues its request to the
selected server.

5.2 Advanced Caching

Caching is one of the most common ways of improving
http performance, and, especially on the public Internet, it
is also one of the most effective. The http specification, as
we’ve seen, recognizes the importance of caching through its
extensive support for the technology within the protocol it-
self. This section examines factors outside of http itself that
are important for effective caching. It first explains the three
different ways that caching is commonly implemented. The
section then describes key technologies that support those
implementations.

5.2.1 Caching Implementations

The Internet includes many participants—individual users,
enterprises, Web sites, service providers, and others—almost
all of whom can benefit from http caching. Supporting
each of these parties effectively, however, leads to signifi-
cantly different caching implementations. All implementa-
tions rely on the http headers and options that chapter 3
describes, but differ in the location of cache servers and the
additional technology supporting those servers. The three
implementation approaches are known as proxy caches,
transparent caches, and reverse proxy caches. Table 5.2 sum-
marizes the approaches; we’ll look at each in more detail in
the rest of this subsection. The following subsections exam-
ine the supporting technologies.

Accelerating HTTP 187

Table 5.2 Caching Implementations

Implementation Benefits Technologies

Proxy Caches Enterprises reduce the

bandwidth required for

their Internet connections

and improve performance

for their users.

PAC,

WPAD

Transparent Caches Internet Service Providers

reduce the bandwidth re-

quired for their inter-

provider connections and

improve performance for

their customers.

WCCP,

NECP

Reverse Proxy Caches Web sites reduce the load

on their Web servers and

improve performance for

their users.

ICP,

HTCP,

CARP

The most straightforward implementation of http caching
is with proxy cache servers. Proxy caches are most common
in enterprises and other organizations that connect many
users to the Internet. As figure 5.7 shows, the organization

Internet

Proxy
Cache
Server

Internet
Access

Web Client

Web Client

Organization Internet Service Provider

Web Client

� Figure 5.7
Organizations with Internet
connections can run their own
proxy cache server to improve
performance for their users and to
reduce the bandwidth the Internet
connection needs.

188 HTTP Essentials

deploys the proxy cache as the gateway to the Internet con-
nection. (In many cases, the proxy server system is also an
Internet firewall.)

To exploit the proxy cache server, users within the organiza-
tion direct their Web browsers to use the proxy for Internet
access. All popular Web browsers include the ability to spec-
ify a proxy server; figure 5.8 shows the relevant configuration
screen for Microsoft’s Internet Explorer.

Properly configured, the users’ browsers will send their http
requests to the proxy cache server rather than to actual Web
sites. If the proxy has previously cached the content it will, as
in figure 5.9, return the appropriate http response to the
client immediately.

Notice that the proxy cache server is able to return the ap-
propriate http response without sending any traffic to the
Internet. This behavior not only saves the organization
money by reducing the bandwidth requirements for its
Internet access connection, it also gives the user improved
performance. The proxy cache is able to respond to the user
immediately, without the delay associated with communica-
tions across the Internet.

One of the practical challenges associated with deploying a
proxy cache server is appropriately configuring the users’

Figure 5.8 �
Users configure their Web browsers to
send requests to a proxy server rather

than directly to the Internet.

Accelerating HTTP 189

Web browsers. Some browsers allow organizations to pre-
configure proxy services (along with several other options)
and distribute the preconfigured version within the organiza-
tion. Preconfiguration is not always simple, however, and
users that download the latest browser version directly from
the Internet quickly defeat the organization’s efforts. A more
foolproof approach relies on Proxy Auto Configuration (pac)
scripts and the Web Proxy Auto-Discovery Protocol (wpad).
A pac script is a simple JavaScript file with proxy configura-
tion instructions, and wpad is a simple communication pro-
tocol that allows browsers to automatically discover and
access pac scripts stored on a network. Later subsections
look at each in more detail.

Internet Service Providers (isps) can also realize significant
benefits from http caching. The benefits are similar: isps
reduce the amount of bandwidth they require for their con-
nections to other isps or the Internet backbone, and they
provide more responsive Web browsing to their customers.
Figure 5.10 shows a typical cache server deployment at an
isp; notice that the cache server is located on the isp’s net-
work rather than the organization’s. Also, the figure shows an
Internet connection for an enterprise or other organization
to highlight the differences with figure 5.7. The technique is

Internet

Proxy
Cache
Server

Internet
Access

1 GET

2

200 OK

Web Client

� Figure 5.9
If a proxy server already has a copy of
a resource in its local cache, it can
respond directly to the client without
communicating with the origin server.

190 HTTP Essentials

equally effective, however, for isps serving dial-up or other
individual users.

The most significant difference between figures 5.10 and 5.7
is the type of cache server. Instead of a proxy cache server,
isps typically use transparent cache servers. The reason for
the difference is the configuration burden. Unlike an enter-
prise or organization, isps cannot easily mandate that all
Web users configure the appropriate proxy settings in their
browsers. Furthermore, pac scripts and the wpad protocol
are generally effective only within a single local network, so
isps cannot benefit from their use.

Transparent cache servers compensate for these restrictions.
As the name implies, transparent caches are invisible to the
end users. Web browsers don’t need any special configuration
to use a transparent cache; they simply access remote Web
sites normally. The key to the operation of a transparent
cache is cooperation between the isp’s routers and the cache
server. As figure 5.11 shows, each access router continuously
examines traffic from the isp’s customers, looking for http
messages. (Routers recognize those requests by their tcp

Internet

Internet
Access

Web Client

Web Client

Organization Internet Service Provider

Router Router

Transparent
Cache Server

Web Client

Figure 5.10 �
Transparent cache servers are often

administered by Internet access
providers rather than user

organizations. They avoid forcing
users to configure their browsers with

proxy server information.

Accelerating HTTP 191

port number; generally 80.) When the router detects an
http message, it intercepts the message and, in effect, sends
it on a detour to the transparent cache server. If the cache
server has a local copy of the content, it can respond imme-
diately as in figure 5.11. Otherwise it sends the request on to
the actual Web server. (A slight variation relies on http
switches, rather than routers, to redirect http messages. The
effect is the same, however.)

The key to effective transparent caching is coordinating the
operation of the access router and the cache server. Cisco’s
proprietary Web Cache Communication Protocol (wccp) is
one approach for this coordination; the Network Element
Control Protocol (necp) is a newer, but standard, protocol
with similar functions.

The third type of cache implementation, reverse proxy cach-
ing, moves control over caching to Web sites. Although it’s
easy to see the improvement caching offers to end users—
quicker, more responsive Web browsing—caching can also
benefit Web sites. Indirectly, of course, the Web site’s image
improves whenever end users’ experiences improve. In addi-
tion, whenever a cache provides http content on behalf of
an origin server, the server itself has one less http exchange
to process. Caching reduces the bandwidth required by Web

Internet
Internet
AccessRouter Router

Transparent
Cache
Server

1 GET

2

GET

3

200 OK

4 200 OK

Web Client

Cache Controversies

Although transparent caching has

obvious benefits to both ISPs and

end users, it is not free from

controversy. Many in the Internet

community object to the very idea

behind transparent caches—users’

requests are redirected from their

intended destination without the

users’ knowledge or consent. HTTP

acceleration is generally

considered a beneficial

application of this technology, but

it is easy to imagine more

disreputable uses. Users

attempting to access a Web site

could be “detoured” to a Web site

of a competitor, for example, or

they could be redirected to a

phony version of the intended site.

Despite the controversy, ISPs are

expected to continue to deploy

transparent cache servers in their

networks.

� Figure 5.11
To force user requests to traverse a
transparent cache server, a router (or
switch) must explicitly reroute those
requests to the cache.

192 HTTP Essentials

servers for their connection to the Internet, and it reduces
the load on those servers by reducing the number of http
transactions they must handle.

Given these benefits, it is not surprising that Web sites don’t
just rely on end users and their isps to implement http
caching. Reverse proxy caching allows Web sites to take con-
trol of caching themselves, independently of users and isps.

Figure 5.12 illustrates the main concept behind reverse proxy
caching. The Web site or, more commonly, a service provider
acting on behalf of the Web site, deploys a network of re-
verse proxy cache servers throughout the Internet. The more
widely they can be dispersed, and the farther away from the
origin server, the better.

Once the cache servers are in place, end users can receive the
Web site’s content directly from the nearest cache. As figure
5.13 indicates, different users are likely to communicate with

Origin
Web Server

Web Client

Web Client

Reverse Proxy
Cache ServerReverse Proxy

Cache Server

Internet

Web Client

Figure 5.12 �
Web sites or Web hosting

providers can deploy a network
of reverse proxy cache servers

throughout the Internet.

Accelerating HTTP 193

different cache servers, depending on their location on the
Internet.

This discussion is probably starting to sound a lot like our
description of global load balancing, and, indeed, the distinc-
tion is not very fine. At the risk of exaggerating differences
between the two, we note that global load balancing typically
relies on multiple Web sites with full-featured Web servers,
while reverse proxy caches are often special-purpose devices
tailored for caching. Also, the Web sites that support global
load balancing tend to be run by organizations and Web
hosting providers; reverse proxy servers, on the other hand,
are most effective if they are located on the networks of
Internet access providers.

There is one aspect of reverse proxy caching that makes it
significantly different from other forms of caching: Reverse
proxy caching relies on a network of cache servers. Indeed,

Origin
Web Server

Web Client

Web Client

Reverse Proxy
Cache ServerReverse Proxy

Cache Server

Web Client

� Figure 5.13
With a network of reverse proxy cache
servers in place, a Web site’s users can
be effectively serviced by nearby
servers. Since the cache servers are
closer to the clients, they can respond
more quickly. Cache servers also
relieve some of the processing burden
on the origin server, and they reduce
that server’s bandwidth requirements.

194 HTTP Essentials

the more servers that are part of its network, the more effec-
tive reverse proxy caching becomes, because one of the main
objectives of reverse proxy caching is to disperse content as
widely as possible.

The cache server network also allows for more sophisticated
caching. In an isolated deployment, a cache server that does
not have a copy of the requested content has only one choice:
Relay the request to the origin server. A network, however,
offers entirely new options. Instead of burdening the origin
server for new content, networked cache servers can pass
requests among each other. If a nearby server does have a
copy, it may respond more quickly than the origin server.

These potential optimizations have led engineers to develop
several protocols for coordinating cache server networks.
Cisco’s Web Cache Communication Protocol (mentioned
previously) provides such functionality, as do standard proto-
cols such as the Internet Cache Protocol (icp) and the Hyper
Text Caching Protocol (htcp).

5.2.2 Proxy Auto Configuration Scripts

One of the major problems facing any deployment of tradi-
tional proxy servers is configuring end users’ browsers appro-
priately. Figure 5.8 shows the standard dialog box for
Microsoft’s Internet Explorer. That setting alone is compli-
cated enough for end users to find and understand, but
imagine the difficulties if an installation requires the “Ad-
vanced” setting at which that dialog box hints. A dialog box
such as the one in figure 5.14 will certainly challenge average
users.

To save end users from having to manually configure their
proxy settings, and to give network administrators much
more flexibility in defining proxy configurations, Netscape
created the concept of a Proxy Auto Configuration (pac)
script. Other browser manufacturers have agreed to support
pac scripts as well. There are, however, slight differences in

Status of Caching Protocols

As of this writing, HTTP caching

and caching protocols are rapidly

evolving technologies. Although a

few protocols have been

standardized, the industry

acknowledges that those

protocols have several

deficiencies. New protocols with

essential new functionality,

however, are still in the early stage

of their development. In these

circumstances, it does not seem

appropriate to describe the details

of each protocol. This text,

therefore, focuses on an overview

of the protocols’ operation rather

than details. Readers are

encouraged to consult the

“References” section of this book

for information on obtaining the

latest versions of each protocol

specification.

Accelerating HTTP 195

the more subtle and advanced aspects of the pac format, so
anyone developing pac scripts for multiple browsers should
stick to the basic pac capabilities.

The pac format itself is a file containing JavaScript code.
The file can contain any number of functions and variables,
but it must include the function FindProxyforURL(). The
browser will call this function with two parameters, url and
host, before it retrieves any url. The url parameter contains
the url that the browser wants to retrieve, and the host pa-
rameter contains the host name from that url. (This second
parameter is actually redundant, but, because extracting the
host from the url is an extremely common operation, the
pac format makes it a separate parameter as a convenience to
pac developers.)

The FindProxyForURL() function returns a single character
string. That string lists, in order, the methods that the
browser should use to retrieve the url; table 5.3 lists the pos-
sible values. The string separates individual methods by
semicolons. If the string is empty, the browser should contact
the host directly.

� Figure 5.14
Manually configuring the full range of
proxy services for a browser can be
complicated, as this dialog box shows.

196 HTTP Essentials

Table 5.3 PAC Retrieval Options

Option Meaning

DIRECT Connect to the host directly without using a

proxy.

PROXY host:port Connect to the indicated proxy server.

SOCKS host:port Retrieve the URL from the indicated SOCKS

server.

An example pac file, shown below, simply returns the name
of a proxy server for any url.

function FindProxyForURL(url, host)
{
 return "PROXY proxy.hundredacrewoods.com:8080";
}

In addition to identifying the FindProxyForURL() function,
the pac format defines several functions that the browser can
provide on behalf of a pac script developer. These functions,
listed in table 5.4, provide many utilities that pac script de-
velopers are likely to find useful.

Table 5.4 PAC Helper Functions

Function Use

isPlainHostName() Indicates if a host name is not a domain

name (e.g., has no dots).

dnsDomainIs() Indicates if the domain of a host name is

the indicated domain.

localHostOrDomainIs() Indicates if a host name is the same as a

local name or domain name.

isResolvable() Indicates if a host name can be resolved

to an IP address.

isInNet() Indicates if a host name or IP address

belongs to the indicated network.

dnsResolve() Resolves a host name to an IP address.

myIpAddress() Returns the IP address of the client

browser.

Accelerating HTTP 197

Table 5.4 continued

Function Use

dnsDomainLevelIs() Indicates the level in the DNS hierarchy of

a host name.

shExpMatch() Indicates if a string matches a specified

shell expression.

weekdayRange() Indicates if the current date is within the

specified range of weekdays.

dateRange() Indicates if the current date is within the

specified range.

timeRange() Indicate if the current date is within the

specified time.

The following example shows how a pac developer might
use these helper functions. The example directs browsers to a
proxy unless the requested url is for a host in the
hundredacrewoods.com domain or for a host that is local (in
other words, has no domain name).

function FindProxyForURL(url, host)
{
 if (isPlainHostName(host) ||
 dnsDomainIs(host, ".hundredacrewoods.com"))
 return "DIRECT";

 else
 return
 "PROXY proxy.hundredacrewoods.com:8080";
}

Once a network administrator has created a pac script, users
configure their browsers to locate and retrieve the script from
a server on the network. Typically, browsers allow users to
specify the location of a pac script via a url, as figure 5.15
shows.

5.2.3 Web Proxy Auto-Discovery

Proxy Auto Configuration scripts allow network administra-
tors to hide some of the complexity of proxy configuration
from end users, but, as figure 5.15 shows, those users must

198 HTTP Essentials

still configure their browsers with the url for the pac script.
Even that minimal configuration introduces the possibility of
a configuration error. To simplify proxy configuration even
further, newer browsers support a technique known as Web
Proxy Auto-Discovery (wpad). With wpad, browsers dis-
cover the location of their pac script automatically, without
any user configuration.

Although it’s often referred to as a protocol, wpad is not a
separate communications protocol itself. Rather, it is a set of
rules for using various existing protocols. Each of these pro-
tocols can provide a pac script location; wpad simply defines
a consistent and unambiguous procedure for using them.

Table 5.5 Web Proxy Auto-Discovery Rules

Step Use Procedure

1 Required Check for a PAC location (option code 252) in a Dy-

namic Host Configuration Protocol (DHCP) message.

2 Optional Query for a PAC location using the Server Location

Protocol (SLP).

3 Required Query the Domain Name System (DNS) for the ad-

dress (A) record for wpad.target.domain.name.com,

where target.domain.name.com is the domain name

of the client.

Figure 5.15 �
To simplify proxy server

configuration, users can tell their
browsers to automatically

retrieve proxy settings from a
network server. This dialog box

tells the browser where to find its
PAC script.

Accelerating HTTP 199

Table 5.5 continued

Step Use Procedure

4 Optional Query DNS for the server (SVR) record for

wpad.tcp.target.domain.name.com.

5 Optional Query DNS for the text record (TXT) for

wpad.target.domain.name.com.

6 Remove the left-most component of the domain

name (so that target.domain.name.com becomes

domain.name.com) and repeat steps 3-6, continuing

until the minimal domain name is reached (i.e., don’t

try wpad.com).

When a client obtains the location of its pac script using the
wpad procedure, it may find that the information is not
complete. The Domain Name System, for example, can re-
turn a host name or address, but it cannot provide a protocol,
port number, or path. To fill in any missing information, the
wpad client uses values from table 5.6.

Table 5.6 Default Values for PAC Location from WPAD

Component Default Value (if not obtained via WPAD)

Protocol http

Host No default; must be obtained from WPAD procedure.

Port 80

Path /wpad.dat

Once the client forms the complete url for its Proxy Auto
Configuration script, it retrieves the pac script and config-
ures its proxy settings appropriately. As part of the retrieval
process, the client may receive various http headers, includ-
ing, for example, an expiration time for the pac script. The
client should honor all of the http headers that are appro-
priate for a pac script. If, for example, the script expires, the
client should restart the entire wpad procedure. It must not
simply reuse the previously discovered pac url.

200 HTTP Essentials

The latest versions of most Web browsers default to using
wpad to discovery proxy configuration. Figure 5.16 shows the
dialog box that enables wpad for Internet Explorer.

5.2.4 Web Cache Communication Protocol

Both Proxy Auto Configuration scripts and Web Proxy
Auto-Discovery help network administrators automatically
configure client browsers to use proxy cache servers. They
both require some amount of control over the users, however
(if for no other purpose, then at least for preventing users
from overriding the wpad process by, for example, clearing
the checkbox in figure 5.16). Other organizations that can
benefit from caching, particularly Internet Service Providers,
don’t have that level of control over their users. To employ
caching for their customers, isps typically rely on transparent
caching.

The Web Cache Communication Protocol (wccp) is one
important protocol for supporting transparent caching. Cisco
Systems developed wccp as a way for routers to learn of the
existence of cache servers and to learn how to redirect http
requests to those caches.

Figure 5.17 shows the environment in which wccp operates.
The Internet Service Provider deploys one or more cache

Figure 5.16 �
Modern Web browsers can

automatically search for proxy server
configuration settings. This dialog box
lets users enable or disable Web proxy

auto-discovery.

Accelerating HTTP 201

servers on the same local network as their access routers.
These access routers provide Internet connectivity to the
isp’s customers, and http requests from the customers’ cli-
ents pass through the access routers. The goal, of course, is
for access routers to detect the http requests and redirect
them to the cache servers. Routers and cache servers can use
wccp to meet that goal.

Table 5.7 summarizes the three types of messages that wccp
defines. The rest of this subsection describes their use.

Table 5.7 WCCP Messages

Message Use

WCCP_HERE_I_AM A cache server sends this message to a

router to identify itself to the router.

WCCP_I_SEE_YOU The router acknowledges the presence of

a cache server with this message; it pro-

vides its current WCCP configuration to

the cache server at the same time.

WCCP_ASSIGN_BUCKETS A cache server tells the router how to redi-

rect HTTP traffic, indicating how much (in

relative terms) each cache server should

receive.

Internet
Link(s) to ISP

Customers
Router

Cache ServerCache Server

Cache ServerCache Server

ISP Local Network

� Figure 5.17
WCCP coordinates the operation of
an access router with a collection of
transparent cache servers. This
figure shows a typical
configuration, in which the access
router and the cache servers belong
to an Internet service provider.

202 HTTP Essentials

The coordination process begins when a cache server sends a
wccp_here_i_am message to a router. The router responds
with a wccp_i_see_you message, and the cache server con-
firms the communication by sending an updated
wccp_here_i_am message. Figure 5.18 illustrates the proc-
ess. The third message is important because it verifies that
not only can the server send messages to the router, but also
that it can receive messages from the router successfully. The
server confirms this by updating a field in its own
wccp_here_i_am to reflect information from the received
wccp_i_see_you.

Cache servers continue to send wccp_here_i_am messages
even after the router has recognized them. The router uses
those messages to determine if a cache server remains
healthy. If the router does not receive a wccp_here_i_am
message within a certain time interval (generally, long
enough so that the router must miss three successive mes-
sages from the server), the router considers the cache server
to be unusable.

Once the router has learned of participating cache servers,
those servers can tell the router how to redirect http traffic.
A cache server does so with an wccp_assign_buckets mes-
sage, which figure 5.19 illustrates. There is no special message
to acknowledge this information, but wccp_i_see_you mes-
sages from the router confirm the assignment by including
the redirection table explicitly. Although routers accept

3

WCCP_I_
SEE_YOU

1

WCCP_HERE_I_AM

2

WCCP_
HERE_
I_AM

Figure 5.18 �
Cache servers announce
themselves to an access

router. The router responds,
and the cache server

acknowledges that response
in a subsequent message.

Accelerating HTTP 203

wccp_assign_buckets from any cache server, generally only
one server controls the redirection. As figure 5.19 indicates,
though, the router confirms the redirection with
wccp_i_see_you messages to all servers.

Once http redirection is active, the router intercepts all traf-
fic to tcp port 80. It calculates a hash on the destination ip
address, resulting in a value between 0 and 255. Based on this
value and the wccp_assign_buckets message from the
cache server, the router identifies a cache server for the traf-
fic. Alternatively, the wccp_assign_buckets message could
indicate that traffic with a particular hash value should not
be redirected at all but forwarded to the actual destination.
Traffic that is to be redirected is encapsulated according to
the Generic Routing Encapsulation (gre) specification using
a protocol number of (hexadecimal) 883e.

As this description indicates, wccp is a fairly simple proto-
col. It does not support sophisticated services such as
redirection of traffic other than to tcp port 80; nor does it
allow the cache servers to direct specific traffic to a specific
server. (The wccp specification does not define the actual
hash function the router uses, so it is impossible to predict
which server will receive particular traffic.) The buckets
mechanism effectively randomly distributes traffic to the set
of cache servers.

2
WCCP_
I_SEE_
YOU

4

WCCP_
ASSIGN_
BUCKETS

1

WCCP_I_
SEE_YOU

WCCP_I_
SEE_YOU3

� Figure 5.19
Once the access router and cache
servers have recognized each other, a
cache server can tell the router how to
divide requests among the
participating caches. The router
acknowledges this assignment in
WCCP messages to all cache servers.

204 HTTP Essentials

5.2.5 Network Element Control Protocol

The Network Element Control Protocol (necp) addresses
many of the limitations of the Web Cache Communication
Protocol. Like wccp, necp provides a way for cache servers
to communicate with routers, switches, and other network
elements. As table 5.8 indicates, necp has three significant
enhancements compared to wccp.

Table 5.8 Differences between the WCCP and the NECP

Additional Features Available in NECP

• Servers can specify which traffic is redirected by the network ele-

ment (by protocol and destination port).

• Servers can distinguish specific traffic (by source IP address and

other characteristics) which should not be redirected.

• Communications between servers and network elements may be

secured so that the identities of the communicating systems are

authenticated.

The first significant difference between necp and wccp is
that necp allows cache servers to indicate which traffic
should be redirected. Servers specify the protocol identifier
(usually tcp or udp) and destination port. In contrast, wccp
always redirects tcp traffic to port 80.

As a further refinement, necp allows servers to specify ex-
ceptions, traffic that the network element should not redi-
rect, even though it otherwise matches a redirection request.
Cache servers identify exceptions by any combination of the
traffic’s source (either by ip address or network mask), desti-
nation, protocol identifier, and port.

The final enhancement is especially important; necp in-
cludes mechanisms to secure the communication between
network elements and cache servers. Specifically, all mes-
sages between the two systems may include authentication
credentials that are based on a secret value (like a password)
shared by the server and network element. These mecha-
nisms protect against an adversary hijacking communications

WCCP version 2

In 1999, Cisco released products

that support version 2 of the Web

Cache Coordination Protocol.

Cisco promotes WCCP version 2 as

having several enhancements

over version 1, most notably a

security feature comparable to

that of NECP. As of this writing,

however, Cisco has not published

the details of WCCP version 2.

Accelerating HTTP 205

by redirecting traffic. As long as the adversary doesn’t know
the network element’s password, its requests for redirection
will be rejected.

Although necp is flexible enough to support many applica-
tions, its primary focus is on the same environments as
wccp—a set of transparent cache servers deployed by an
Internet Service Provider. Unlike wccp, necp intends to
support general network elements in addition to routers, par-
ticularly application layer switches. As figure 5.20 shows, the
cache servers are likely to be in close proximity to the net-
work element.

The necp specification defines a total of 16 different mes-
sages, which table 5.9 lists. These messages are used in pairs;
each of the 8 primary messages has its own acknowledgment.

When a cache server starts operation, it establishes a tcp
connection with the network element and sends an
necp_init message, as in figure 5.21. The network element
responds with an necp_init_ack. The systems maintain the
tcp connection even after the initial message exchange; they
use it for subsequent message exchanges.

Network
Element

Internet
Link(s) to ISP

Customers

Cache ServerCache Server

Cache ServerCache Server

ISP Local Network

� Figure 5.20
The Network Element Control
Protocol is a more general form of
WCCP. It supports general network
elements such as switches and
network access servers, as well as
access routers. The concept is the
same, though. The protocol
coordinates the operation of these
network elements with a set of
cache servers.

206 HTTP Essentials

Table 5.9 NECP Messages

Message Use

NECP_INIT A server indicates to a network element that

it is up and running.

NECP_INIT_ACK A network element acknowledges a server’s

initialization.

NECP_KEEPALIVE Either system queries the other for its health.

NECP_KEEPALIVE_ACK A system responds to a health query from its

peer.

NECP_START A server asks a network element to begin

forwarding traffic to it.

NECP_START_ACK A network element acknowledges a forward-

ing request.

NECP_STOP A server asks a network element to cease

forwarding traffic.

NECP_STOP_ACK A network element acknowledges a server

request to cease forwarding.

NECP_EXCEPTION_ADD A server defines an exception to traffic for-

warding.

NECP_EXCEPTION_ADD_ACK A network element acknowledges the defini-

tion of a traffic forwarding exception.

NECP_EXCEPTION_DEL A server removes a traffic forwarding

exception.

NECP_EXCEPTION_DEL_ACK A network element acknowledges the re-

moval of a traffic forwarding exception.

NECP_EXCEPTION_RESET A server requests the removal of all traffic

forwarding exceptions defined by the server.

NECP_EXCEPTION_RESET_ACK A network element acknowledges the dele-

tion of all of a server’s traffic forwarding

exceptions.

NECP_EXCEPTION_QUERY A server asks for all active traffic forwarding

exceptions.

NECP_EXCEPTION_RESP A network element returns all active traffic

forwarding exceptions.

Accelerating HTTP 207

To reassure each other that they’re still functioning, both
systems periodically send necp_keepalive messages to the
other. A system that receives this message replies with an
necp_keepalive_ack. Either system can initiate this ex-
change; figure 5.22 shows the network element starting the
exchange.

In addition to checking the overall health of a device, the
keep-alive exchange can determine the health of a specific
protocol in a device. With each necp_keepalive message,
the sender may include a list of protocol identifier and port
number pairs. By including them, the sender asks the peer
system to report the health of that service. For example, a
query for the health of tcp port 80 would ask a cache server
for the health of its http service. A queried system responds

Network
Element

Cache Server

1

NECP_
INIT_ACK

2

NECP_INIT

Network
Element

Cache Server

2

NECP_
KEEPALIVE

1

NECP_KEEP
ALIVE_ACK

� Figure 5.21
Cache servers first introduce
themselves to network elements with
an NECP_INIT exchange. The cache
server begins the exchange as in this
example’s first step. The network
element acknowledges it in step 2.

� Figure 5.22
NECP systems maintain their TCP
connection by periodically
sending NECP_KEEPALIVE
messages; these exchanges also
reassure each party that the
other is still alive and functioning.

208 HTTP Essentials

in the necp_keepalive message. The current necp specifica-
tion defines only a general measure, an integer between 0
and 100, for each service. The protocol framework, however,
permits the definition of a much more specific response.

Once the two systems have established a connection and ex-
changed initialization messages, the server can ask the net-
work element to begin redirecting traffic to it. The server
does that with a necp_start message, which the network
element acknowledges with an necp_start_ack, as figure
5.23 illustrates.

The necp_start message includes a list of services that the
network element should begin redirecting to the cache
server. Services are identified by their protocol identifier (tcp
or udp) and destination port. The cache server also indicates
a forwarding method for each service. Options include layer
2 forwarding (in which packets are delivered unchanged di-
rectly to the server), Generic Routing Encapsulation (the
same approach used by wccp), or layer 3 forwarding (in
which the network element replaces the packet’s destination
ip address with that of the server).

The necp_stop message halts traffic redirection. The net-
work element acknowledges this message by returning an
necp_stop_ack message.

Network
Element

Cache Server

1

NECP_
START_ACK

2

NECP_START

Figure 5.23 �
The NECP_START message includes a

list of services that the network
element should begin redirecting to

the cache server. As with all NECP
messages, the receiving system (in

this case the network element)
acknowledges with a response.

Accelerating HTTP 209

In addition to having network elements blindly forward all
traffic of a particular service, necp lets cache servers define
exceptions to the normal forwarding behavior. Network ele-
ments do not redirect exception traffic to the cache server
but, instead, send it directly to its real destination.

To inform a network element of an exception, a server sends
it an necp_exception_add message, to which the network
element responds with an necp_exception_add_ack. Fig-
ure 5.24 illustrates the exchange. One message can list several
exceptions, each of which is identified by the parameters ta-
ble 5.10 lists.

Servers remove exceptions by sending necp_exception_del
messages to network elements. A network element acknowl-
edges the deletion with an necp_exception_del_ack mes-
sage. A server can also delete all of its exceptions at once
with an necp_exception_reset message, which elements
acknowledge with an necp_exception_reset_ack.

Servers can also query a network element to find out what
exceptions the element has in force. The message that does
this is the necp_exception_query, and the network ele-
ment’s response is contained in an necp_exception_resp.

Network
Element

Cache Server

1

NECP_
EXCEPTION_
ADD_ACK

2

NECP_
EXCEPTION_
ADD

� Figure 5.24
Cache servers can list exceptions to
redirected services in
NECP_EXCEPTION_ADD messages.
The network element ceases to
redirect for these exceptions.

210 HTTP Essentials

Table 5.10 Defining a Forwarding Exception

Parameter Meaning

Scope Advisory Indicates whether the exception ap-

plies only to traffic that would be for-

warded to this server or whether the

exception should apply to all traffic that

passes through the network element;

network elements may choose to ig-

nore a global scope if, for example, the

server isn’t trusted to speak for all cache

servers.

TTL The length of time (in seconds) that the

exception should be considered valid; if

this period of time passes without an

update from the server, the network

element should consider the exception

to have expired.

Source IP Address Source IP address(es) for exception

traffic.

Source Address Netmask A mask indicating which bits in the

source IP address are relevant for ex-

ception traffic (e.g., a source address of

192.168.0.0 and netmask of 255.255.0.0

mean that packets with a source ad-

dress of 192.168.x.x, where x is any

value, should be considered exception

traffic).

Destination IP Address Destination IP address(es) for exception

traffic.

Destination Address Netmask A mask indicating which bits in the

destination IP address are relevant for

exception traffic.

Protocol Identifier The protocol identifier for exception

traffic, generally UDP or TCP.

Destination Port Number The destination port number for excep-

tion traffic (e.g., 80 for HTTP).

Accelerating HTTP 211

In the query message the server can refine the set of excep-
tions in which it is interested by specifying exception pa-
rameters, as well as the ip address of the server that initiated
the exception. If a server omits the initiator’s address, or if it
specifies an address other than its own, the server can dis-
cover exceptions installed by other cache servers.

An important characteristic of all requests that servers make
of network elements is their effect on existing traffic sessions.
Requests, whether to start or stop forwarding or add or de-
lete exceptions, have no impact on sessions already in pro-
gress. If, for example, a client has already begun an http
session with the actual destination, a cache server’s request to
receive redirected http traffic will have no effect on that
client’s session. New sessions begun by this client (or any
other) will be forwarded appropriately, but existing sessions
continue unchanged.

This behavior has two important consequences for network
elements and cache servers. First, it means that network ele-
ments must keep track of individual user sessions that pass
through them. This requirement places a significant burden
on the network element. Second, this behavior means that a
cache server should not abruptly terminate its operation. A
more graceful approach—in which the server stops future
forwarding but continues to support existing sessions until
those sessions terminate naturally—provides a much better
service to users.

Perhaps the most important aspect of necp’s operation is its
security support. With necp, cache servers and network ele-
ments can negotiate the use of authentication on all mes-
sages they exchange. The authentication procedure relies on
a secret value that the network element and cache server
share. It is effectively a network element password that a
cache server must know before its messages will be accepted
by the network element.

212 HTTP Essentials

When authentication is in use, a system that wishes to send
an necp message takes that message, adds the shared secret
to the end of it, and computes a cryptographic digest of the
result. It then replaces the shared secret with the output of
the digest and transmits the resulting necp message. Figure
5.25 illustrates the process. The current version of necp speci-
fies the Secure Hash Algorithm (sha-1) function for the
cryptographic digest calculation.

When a network element receives an authenticated message,
it performs the same cryptographic digest calculations. If the
results match, then the network element is assured that the
sending cache server knows the shared secret. If the results
don’t match, the network element rejects the message.

5.2.6 Internet Cache Protocol

So far we’ve looked at protocols that cache servers can use to
communicate with clients and with network elements such
as routers. Equally important in some configurations is how
cache servers communicate with each other. Of particular

NECP Message

shared secretNECP Message

F()

digest

shared secret+

NECP Message digest

Transmitted to Network Element

Figure 5.25 �
To protect against malicious parties

gaining control of a network element
(and “hijacking” sessions passing

through it), the network element and
its cache servers share a secret

password. All systems combine this
password with their NECP messages

to create a cryptographic digest,
which they transmit along with the

message proper.

Accelerating HTTP 213

interest is what happens when a client requests an object for
which the cache server has no local copy. Of course, the
cache server could simply request the object from the actual
destination, but that may not be an optimal approach. There
could well be another cache server nearby that does have the
object, and requesting it from that cache server would be
much quicker than asking the actual destination. A cache
server must answer two questions before it can take advan-
tage of this optimization, however. First, how does it know
which other cache servers have a local copy of the object?
Second, if multiple servers have a copy, how can it determine
which is the closest? The Internet Cache Protocol (icp) pro-
vides answers to both.

The Internet Cache Protocol is actually a very simple proto-
col. It is designed specifically for a deployment like that of
figure 5.26. In that figure, the user’s http GET request arrives
at Cache Server a. That server doesn’t have the object, so it

Origin
Web Server

Web Client

Cache Server BCache Server A

1 HTTP GET

2 ICP QUERY

2 ICP ECHO Cache Server C

2

ICP QUERY

� Figure 5.26
A cache server can use the Internet
Cache Protocol to query other cache
servers on the network. At the same
time, it can send a simple echo
message to the origin server.

214 HTTP Essentials

immediately sends three messages simultaneously. It sends
icp queries to each of the cache servers it knows about, and it
sends an icp echo message to the actual destination, the ori-
gin Web server for the object.

When the cache servers and origin server receive these icp
messages, they respond as in figure 5.27. The first response
arrives from Cache Server b. That response indicates that
Server b does not have a local copy in its cache. The next
response, from Cache Server c, indicates that Server c does
have a local copy. The final response is from the origin
server; it is simply an echo of Cache Server a’s original mes-
sage. (The icp echo message is transmitted to the server’s
udp echo port, so that even servers that don’t understand icp
will respond.)

With these responses, Cache Server a now knows that
Server c has a copy of the object and that Server c was able

Origin
Web Server

Web Client

Cache Server BCache Server A

3 ICP MISS

5 ICP ECHO Cache Server C

4

ICP HIT

Figure 5.27 �
Cache servers respond to ICP queries

with an indication of whether the
requested object is in their local
cache. The origin server merely

responds to the echo request
(because it should always have a copy

of the object). In this example cache
server B responds first, but it indicates

a cache miss. Cache server C is the
next to respond, and it does have a

copy of the object.

Accelerating HTTP 215

to respond more quickly than the origin server. Server a can
assume, therefore, that the quickest way to retrieve the object
is by requesting it from Server c. As figure 5.28 shows, Server
a does exactly that and then returns the requested object to
the client.

One of the important assumptions behind icp is that the icp
query exchange can be very quick. Otherwise, the time taken
for the icp query would cancel out any time saved by query-
ing a nearby cache server. For that reason, icp messages are
short, simple, and carried in udp datagrams rather than tcp
connections.

Table 5.11 lists the icp message types and their use. By design,
icp is a simple protocol, and there are few complications in
its operation. One extra feature that isn’t obvious from the
table is round-trip time measurements. When a cache server
sends an icp query, it can ask the responders to report their

Origin
Web Server

Web Client

Cache Server BCache Server A

HTTP GET

Cache Server C

6

200 OK8

200 OK

7

� Figure 5.28
The original cache server routes the
request to the system with the object
that responded the quickest. Here,
that was cache server C. Cache A,
therefore, forwards the request to C
and relays C’s response to the client.

216 HTTP Essentials

round-trip time to the origin server. This value allows the
original requesting server to estimate how long it would take
for those servers to retrieve the object should they not have a
copy in their local caches.

Table 5.11 ICP Messages

Type Use

Query Asks if the recipient has a copy of an object, identified

by a URL, in its local cache; this message also includes

the IP address of the original requester (the HTTP

client) and an indication of whether the sender is

willing to receive the entire requested object in an

ICP response.

Hit A positive response to a query; the sender does have

a local copy of the object.

Hit/Object Not only does the sender have a local copy of the

requested object, it is including that object in its

response.

Miss A negative response to a query; the sender does not

have a local copy of the object (but is willing to get

one if asked).

Miss/No Fetch The sender does not have a local copy of the re-

quested object and the recipient should not ask for it.

Denied The sender is unwilling to supply the requested

object.

Error The sender couldn’t understand a query it received.

Echo A dummy ICP message that can be sent to the UDP

echo port of a system that doesn’t understand ICP;

there are two versions of this message, one intended

for origin servers and the other intended for remote

cache servers.

5.2.7 Hyper Text Caching Protocol

The Hyper Text Caching Protocol (htcp) addresses some of
the shortcomings of icp, and it adds a few additional capa-
bilities. With htcp, cache servers can probe the contents of

Shortcomings of ICP

Unlike most of the other protocols

this section describes, ICP is

relatively stable and has been

implemented in many products.

Unfortunately, it is rather primitive

and suffers from several

shortcomings when applied to

HTTP caching. The major problem

is that ICP includes only the

requested object in its queries.

Most notably, it does not include

the HTTP headers that the client

included in its original HTTP

request. In some cases those

headers are critical to the

response and may determine the

content of the returned object.

Web servers often use cookies, for

example, to identify a returning

user and provide personalized

content. Obviously, in those cases,

ICP will interfere with the server’s

intentions.

Accelerating HTTP 217

other cache servers to find out if an object can be retrieved
more quickly from a nearby cache rather than the origin
server. Unlike icp, htcp allows the sending server to include
a copy of all the http headers in the client’s original request,
so the responding server can more accurately determine if its
local copy really satisfies the client. In addition, htcp allows
cache servers to actively monitor the contents of each other’s
caches; with this feature they can tell when a neighbor adds
new objects to its cache, modifies objects in its cache, or de-
letes objects from its cache. Through htcp, servers can also
actively modify the contents of another’s cache, adding ob-
jects to that cache or deleting them from it. Because htcp
can be used to modify the content of a server’s local cache, its
messages may include authentication information that vali-
dates the identity of the sender.

Table 5.12 lists the different types of htcp messages. In con-
trast with icp, htcp doesn’t have separate acknowledgment
message types. Rather, each message includes a flag that in-
dicates whether it is a request or a response.

Table 5.12 HTCP Messages

Type Use

NOP No operation, although this can be used to probe the round-trip

time between servers.

TST Test, used to determine if an object is present in a server’s local

cache.

MON Monitor, used to monitor activity in a server’s local cache; a MON

request initiates a monitoring session, while MON responses

report additions to, deletions from, replacements, and refreshes

of the monitored server’s cache.

SET Sends information about an object to a cache server including,

for example, updated cache or expiration headers.

CLR Clear, directs a server to delete an object from its local cache.

218 HTTP Essentials

The Test exchange resembles the icp query. As figure 5.29
shows, a cache server initiates it when a client requests an
object that is not in its local cache. That server sends simul-
taneous tst request messages to all its neighbor caches,
specifying both the object requested and any http headers
in the client’s original request. In the example of the figure,
server b replies with a tst response that indicates the object
is not present in its cache while, a short time later, server c’s
tst response indicates that it does have a copy. With this
information, cache server a can send an http request to
server c requesting the object.

The htcp tst response not only indicates whether the
sender has a copy of the object; it can also provide informa-
tion about that object. Most notably, the response indicates
the http method, uri, version, and headers used to request
the object, as well as the http headers included in the origin
server’s response. The tst response may also include special
cache information listed in table 5.13.

Web Client

Cache Server B

Cache Server A

1 HTTP GET

2 HTCP TST

2

HTCP TST

Cache Server C

3
HTCP TST
(not
present)

4
HTCP TST
(present)

Figure 5.29 �
The Hyper Text Caching Protocol is
a more sophisticated version of the

Internet Cache Protocol, but its
basic operation is very similar. A

cache server sends HTCP TST
messages to other cache servers to

try to locate a nearby source for the
requested object.

Accelerating HTTP 219

Table 5.13 Cache Information HTCP May Provide

Item Meaning

Cache-Vary The content of the object varies depending on the

value of the indicated HTTP headers.

Cache-Location The indicated cache servers have a copy of this

object.

Cache-Policy The object may not be cacheable or shareable

among cache servers, or its content could change

depending on HTTP cookies.

Cache-Flags The server doesn’t know all the HTTP response

headers that apply to the object.

Cache-Expiry The object expires at the indicated time.

Cache-MD5 A cryptographic checksum of the contents of the

object.

Cache-to-Origin The round-trip time to the origin server.

A unique feature of htcp is the ability for one cache server
to monitor the contents of another server’s local cache. A
cache server that is quite remote from an origin server, for
example, can monitor another cache server that is local to the
origin. The local server, especially if it is positioned between
the Internet and the origin server, may be able to track all
requests for objects. Such a local server would be well posi-
tioned to know about all objects on the origin server, so by
monitoring its cache, the remote cache server could keep up
to date with the origin server’s content.

Figure 5.30 shows this scenario. The process begins when the
remote server sends an htcp mon request to the local server.
This request identifies a channel through which the local
server should inform the remote server of any changes to its
cache contents. The mon request includes a time period for
the channel. If the remote server doesn’t renew the channel
(with another mon request) within that time, cache updates
from the local server automatically cease.

Once the channel is established, the local cache server sends
a mon response to the remote server every time its cache

220 HTTP Essentials

contents change. Each mon response includes the time re-
maining for the life of the channel, the action that occurred
in the local cache, the reason for the action, and the identity
of the object affected, as table 5.14 indicates.

Table 5.14 HTCP Monitor Responses

Field Meaning

TIME How many seconds remain in the monitor channel’s life

(unless refreshed).

ACTION The change that has occurred in the local cache.

 0 An object has been added to the cache.

 1 An object in the cache has been refreshed.

 2 An object in the cache has been replaced.

 3 An object in the cache has been deleted.

REASON The reason for the change in the cache.

 0 Unspecified reason.

 1 A client fetched the object.

 2 A client fetched the object with caching disallowed.

 3 The cache server prefetched the object.

 4 The object expired, as per its headers.

 5 The object was purged to conserve cache space.

Internet

Local Cache Server

Remote Cache Server 1
HTCP MON
(Request)

3

Origin
Web Server

2

HTCP MON
(Response)

Figure 5.30 �
HTCP allows one cache server to

monitor another’s contents. As
content on the local cache server

changes, the server sends MON
responses to the remote cache

server. This operation can help the
remote server keep its cached

contents up to date even before a
client requests an object.

Accelerating HTTP 221

Table 5.14 continued

Field Meaning

IDENTITY The object in the local cache that changed.

 METHOD The HTTP method used to access the

object.

 URI The object’s Uniform Resource Identifier.

 VERSION The HTTP version used to access the

object.

 REQ-HDRS The HTTP headers included in the request

for the object.

 RESP-HDRS The HTTP headers included in the re-

sponse to the request.

 ENTITY-HDRS HTTP headers applying to the object.

 CACHE-HDRS Cache information about the object.

The htcp mon exchange allows a cache server to ask for
updates to another’s cache. The protocol can also operate in
reverse: Cache servers can, without invitation, tell other serv-
ers to modify their caches. The messages to do that are set
and clr. As figure 5.31 shows, even an origin Web server can
use htcp to keep cache servers supporting it up to date. The
set and clr messages are tools that the origin server could
use to do so. A set message updates the headers correspond-
ing to an object including, for example, its expiration time. A

Internet

Cache Server

HTCP SET
or

HTCP CLR

Origin
Web Server

� Figure 5.31
Origin servers may use HTCP to
proactively update cache servers,
telling them, for example, when HTTP
headers corresponding to a cached
object have changed.

222 HTTP Essentials

clr message asks a cache server to remove the object from its
cache entirely.

Because the set and clr messages allow an external system
to modify the contents of a server’s cache, it is important to
be able to verify the identity of the system that sends them.
To provide that verification, htcp defines a mechanism for
authenticating system identity. The approach is very similar
to that of the Network Element Control Protocol. The
communicating systems must first share a secret value. A
sending system adds the contents of the message to the se-
cret key, computes a cryptographic digest of the combina-
tion, and appends that digest result to the message. The
receiving system performs the same computation and makes
sure that the digest results match. If they don’t match, the
receiving system rejects the htcp message.

5.2.8 Cache Array Routing Protocol

Another protocol that can enhance the performance of http
caching is the Cache Array Routing Protocol (carp). This
protocol allows a collection of cache servers to coordinate
their cache contents in order to use their cache resources
more efficiently. The typical environment for carp, shown in
figure 5.32, is somewhat different from the configurations
we’ve previously considered. That environment assumes a
collection of cache servers co-located with each other, a con-
figuration commonly called a server farm. The figure shows
the server farm located behind a proxy server on an Enter-
prise location; the same principles apply to a cache server
farm deployed behind a transparent cache on the premises of
an Internet Service Provider.

If the cache server farm operates most efficiently, no object
will be stored by more than one cache server. In addition, the
system that serves as the entry point to the server farm (the
proxy server in figure 5.32) will know which cache server
holds any object. The Cache Array Routing Protocol accom-
plishes both.

Accelerating HTTP 223

Interestingly, carp is not actually a communication protocol
at all. It achieves its goals without any explicit communica-
tions between the entry point and cache servers, or among
the cache servers themselves. Instead, carp is a set of rules
for the entry point to follow. The rules consist of an array
configuration file and a routing algorithm. The configuration
file tells the entry point which cache servers are available,
and the routing algorithm tells the entry point which cache
server should be queried for any particular object.

Note that the cache servers themselves don’t necessarily have
to do anything special to support carp. They simply operate
as regular cache servers. When a request arrives for an object
not in the local cache, the server retrieves it and then adds it
to the cache. The key to carp is the routing algorithm. En-
try points that use it correctly always ask the same cache
server for the same object. Subsequent client requests for an
object will always be directed to the cache server that has
already retrieved that object.

The entry point reads its carp configuration file when it be-
gins operation. That file consists of global information,
shown in table 5.15, and a list of cache servers.

Internet

Proxy
Server

Web Client

Web Client

Router

Cache Server

Cache Server

Cache Server

Cache Server

Cache
Server
Farm

Web Client

� Figure 5.32
The Cache Array Routing Protocol
(which isn’t really a communications
protocol at all) defines a set of rules
that coordinate the operation of a
collection of cache servers, primarily
to avoid redundant caching.

224 HTTP Essentials

Table 5.15 Global Information in the CARP Configuration

Field Use

Version The current CARP version is 1.0.

ArrayEnabled Indicates whether CARP is active on the server.

ConfigID A unique number used to track different versions of

the configuration file.

ArrayName A name for the array configuration.

ListTTL The number of seconds that this array configuration

should be considered valid; the entry point should

refresh its configuration (perhaps over a network)

when this time expires.

Table 5.16 lists all the information the file contains about
each cache server, but the important parameters are the
server’s identity and a value called the Load Factor. The Load
Factor is important because it influences the routing algo-
rithm. Cache servers with higher load factors are favored
over servers with lower load factors. An administrator con-
figuring a carp server farm, for example, should assign
higher load factors to those cache servers with larger caches
and faster processors.

Table 5.16 Server Information in CARP Configuration File

Field Use

Name Domain name for the cache server.

IP address IP address of the cache server.

Port TCP port on which the cache server is listening.

Table URL URL from which the CARP configuration file may be

retrieved.

Agent String The vendor and version of the cache server.

Statetime The number of seconds the cache server has been

operating in its current state.

Status An indication of whether the cache server is able to proc-

ess requests.

Load Factor How much load the server can sustain.

Cache Size The size (in MB) of the cache of this server.

Accelerating HTTP 225

Table 5.17 details the carp routing algorithm. Note that steps
1 and 2 are performed before the entry point begins redirect-
ing http requests; they are not recalculated with each new
request.

Table 5.17 The CARP Routing Algorithm for Entry Points

Step Action

1 Convert all cache server names to lowercase.

2 Calculate a hash value for each cache server name.

3 As an HTTP request arrives, convert the full URL to lowercase.

4 Calculate a hash value for the complete URL.

5 Combine the URL’s hash value with the hash values of each

cache server, biasing the result with each server’s load factor;

the resulting values are a “score” for each cache server.

6 Redirect the request to the server with the highest score.

5.3 Other Acceleration Techniques

While load balancing and caching are the two most popular
techniques for accelerating http performance, Web sites
have adopted other acceleration techniques as well. Two par-
ticularly effective approaches are specialized ssl processing
and tcp multiplexing. Strictly speaking, neither actually di-
rectly influences the http protocol operation; however, both
techniques are so closely associated with Web performance
that any http developer should be aware of their potential.

5.3.1 Specialized SSL Processing

As section 4.2 explains, the Secure Sockets Layer (ssl) is the
most common technique—by far—for securing http ses-
sions. Unfortunately, ssl relies on complex cryptographic
algorithms, and calculating those algorithms is a significant
burden for Web servers. It can require, for example, one
thousand times more processor resources to perform ssl cal-
culations than to simply return the requested object. A secure

226 HTTP Essentials

Web server may find that it is doing much more crypto-
graphic processing than returning Web pages.

To address this imbalance, several vendors have created spe-
cial-purpose hardware that can perform cryptographic calcu-
lations much faster than software. Such hardware can be
included in add-in cards, on special-purpose modules that
interface via scsi or Ethernet, or packaged as separate net-
work systems. In all cases, the hardware performs the ssl
calculations, relieving the Web server of that burden.

Figure 5.33 compares a simple Web server configuration with
one employing a separate network system acting as an ssl
processor. The top part of the figure emphasizes the fact that
a simple configuration relies on the Web server to perform
both the ssl and the http processing. In contrast, the bot-
tom of the figure shows the insertion of an ssl processor.
That device performs the ssl processing. After that process-
ing, the device is left with the http connection, which it
merely passes through to the Web server. To the Web server,
this looks like a standard http connection, one that does not
require ssl processing. The ssl processor does what it does
best—cryptographic computations—while the Web server
does its job of responding to http requests.

Client Server

Client
Server

SSL Processor

SSL
Session

HTTP
Connection

Figure 5.33 �
An external SSL processor acts as an

endpoint for clients’ SSL sessions, but
it passes the HTTP messages on to the

Web server. This configuration
offloads SSL’s cryptographic

computations from the Web server
and onto special purpose hardware

optimized for that use.

Accelerating HTTP 227

5.3.2 TCP Multiplexing

Although the performance gains are not often as impressive,
tcp multiplexing is another technique for relieving a Web
server of non-essential processing duties. In this case, the
non-http processing is tcp. Take a look at the simple Web
configuration of figure 5.34. In that example, the Web server
is supporting three clients. To do that, it manages three tcp
connections and three http connections.

Managing the tcp connections, particularly for simple http
requests, can be a significant burden for the Web server. Re-
call from the discussion of section 2.1.2 that, although it al-
ways takes five messages to create and terminate a tcp
connection, an http GET and 200 OK response may be car-
ried in just two messages. In the worst case, a Web server
may be spending less than 30 percent of its time supporting
http.

External tcp processors offer one way to improve this situa-
tion. Much like an ssl processor, a tcp processor inserts it-
self between the Internet and the Web server. As figure 5.35
indicates, the tcp processor manages all the tcp connections
to the clients while funneling those clients’ http messages
to the Web server over a single tcp connection. The tcp
processor takes advantage of persistent http connections
and pipelining.

Client
Server

Client

Client

TCP
Connection

HTTP
Connection

� Figure 5.34
Each HTTP connection normally
requires its own TCP connection,
forcing Web servers to manage TCP
connections with every client. For
Web sites that support millions of
clients, this support can become a
considerable burden.

228 HTTP Essentials

External tcp processors are not effective in all situations.
They work best for Web sites that need to support many cli-
ents, where each client makes simple http requests. If the
Web server supports fewer clients, or if the clients tend to
have complex or lengthy interactions with the server, then
tcp processors are less effective. In addition, the tcp proces-
sor must be capable of processing tcp faster than the Web
server, or it must be capable of supporting more simultane-
ous tcp connections than the Web server.

Server

TCP
ProcessorClient

Client

Client

TCP
Connections

HTTP
Connections

TCP
Connection

HTTP
Connections

Figure 5.35 �
A TCP processor manages individual

TCP connections with each client,
consolidating them into a single TCP

connection to the Web server. This
single connection relies heavily on

HTTP persistence and pipelining.

229

APPENDIX A

HTTP Versions —
Evolution & Deployment of HTTP

Until now, this book has described version 1.1 of http. That
version, however, is actually the third version of the protocol.
This appendix takes a brief look at the protocol’s evolution
over those three versions and the differences between them.
The last subsection assesses the support for the various fea-
tures of version 1.1 by different implementations.

A.1 HTTP’s Evolution

The Hypertext Transfer Protocol has come to dominate the
Internet despite a rather chaotic history as a protocol stan-
dard. As we noted in chapter 1, http began as a very simple
protocol. In fact, it could hardly be simpler. The original
proposal by Tim Berners-Lee defined only one method—
GET—and it did not include any headers or status codes. The
server simply returned the requested html document. This
protocol is known as http version 0.9, and despite its sim-
plicity, it occasionally shows up in Internet traffic logs even
today.

230 HTTP Essentials

Vendors and researchers quickly realized the power of the
hypertext concept, and many raced to extend http to ac-
commodate their own particular needs. Although the com-
munity worked cooperatively and openly enough to avoid
any serious divergences, the situation evolved much as figure
a.1 depicts, with many different proprietary implementations
claiming to be compatible with http 1.0.

Without a true standard, however, developers grew increas-
ingly concerned about the possibility of http fragmenting
into many incompatible implementations. Under the aus-
pices of the Internet Engineering Task Force (ietf), leading
http implementers collected the common, and commonly
used, features of many leading implementations. They de-
fined the resulting specification as http version 1.0. In some

HTTP/0.9

Vendor A
"HTTP/1.0"

Vendor C
"HTTP/1.0"

Vendor B
"HTTP/1.0"

Vendor D
"HTTP/1.0"

"Official"
HTTP/1.0

Interim
"HTTP/1.1"

Official
HTTP/1.1

Vendor A
"HTTP/1.1"

Vendor C
"HTTP/1.1"

Vendor B
"HTTP/1.1"

1

2

3

4

5

HTTP/1.1

6 ?

Figure A.1 �
HTTP diverged from the original

version 0.9 specification into many
vendors’ proprietary

implementations. The specification for
HTTP version 1.0 attempted to

capture the most common
implementation practices. Although

vendors have continued to create
their own implementations based on

incomplete versions of the HTTP 1.1
specification, it is hoped that the final

release of HTTP version 1.1
specifications will allow

implementations to converge on a
single standard.

HTTP Versions 231

ways, writing the specification after products are already
widely deployed seems backwards, but it did allow the work-
ing group to take into account a lot of operational experi-
ence. The working group then embarked on an effort to
create a true http standard, which would be called http
version 1.1.

Unfortunately, the effort to define http version 1.1 took a lot
longer than originally anticipated, and many draft specifica-
tions for version 1.1 were published and discussed. Vendors
implemented products conforming to these draft specifica-
tion and claimed http 1.1 compliance, even though no offi-
cial http 1.1 standard yet existed.

By now, though, the situation is finally starting to stabilize.
The standard for http version 1.1 is finally complete; im-
plementations are beginning to converge on a common in-
terpretation of the standard, and the community is starting
to create formal compliance tests to ensure interoperability.
As the World Wide Web extends beyond personal com-
puters to appliances, personal digital assistants, wireless tele-
phones, and other systems, the importance of http 1.1 as a
true, interoperable standard will only increase.

A.2 HTTP Version Differences

When the Internet Engineering Task Force finalized the
specification for http version 1.0, they recognized that the
protocol had significant performance and scalability prob-
lems. The ietf’s parent body (the Internet Engineering
Steering Group, or iesg) insisted that version 1.0 be pub-
lished as an “Informational” document only, and they went so
far as to insert the following comment in the standard itself:

The iesg has concerns about this protocol, and ex-
pects this document to be replaced relatively soon by
a standards track document.

232 HTTP Essentials

The replacement for http version 1.0, of course, is http
version 1.1. Version 1.1 offers several significant improvements
over version 1.0. These improvements enhance the extensibil-
ity, scalability, performance, and security of the protocol and
its systems. The most significant changes http 1.1 introduces
are persistent connections, the Host header, and improved
authentication procedures.

Table a.1 lists the http methods each version defines. Note
that http version 1.0 includes two methods—link and
unlink—that do not exist in version 1.1. Those methods,
which were not widely supported by Web browsers or serv-
ers, allow an http client to modify information about an
existing resource without changing the resource itself.

Table A.1 Methods Available in HTTP Versions

Method HTTP/0.9 HTTP/1.0 HTTP/1.1

CONNECT ●

DELETE ● ●

GET ● ● ●

HEAD ● ●

LINK ●

POST ● ●

PUT ● ●

OPTIONS ●

TRACE ●

UNLINK ●

Table a.2 summarizes the http headers available in each of
the versions. Just to be complete, the table includes a column
for http version 0.9, but, as we’ve noted, version 0.9 doesn’t
actually use any headers. Three headers, Link, Title, and url,
exist in version 1.0 but not 1.1. Those methods are mainly
associated with the link and unlink methods. Like the
methods themselves, they have not seen support by popular
Web browsers and clients.

HTTP Versions 233

Table A.2 Headers Available in HTTP Versions

Header HTTP/0.9 HTTP/1.0 HTTP/1.1

Accept ● ●

Accept-Charset ● ●

Accept-Encoding ● ●

Accept-Language ● ●

Accept-Ranges ●

Age ●

Allow ● ●

Authorization ● ●

Cache-Control ●

Connection ● ●

Content-Encoding ● ●

Content-Language ● ●

Content-Length ● ●

Content-Location ●

Content-MD5 ●

Content-Range ●

Content-Type ● ●

Date ● ●

ETag ●

Expect ●

Expires ● ●

From ● ●

Host ●

If-Match ●

If-Modified-Since ● ●

If-None-Match ●

If-Range ●

If-Unmodified-Since ●

continues…

234 HTTP Essentials

Table A.2 Headers Available in HTTP Versions (continued)

Header HTTP/0.9 HTTP/1.0 HTTP/1.1

Last-Modified ● ●

Link ●

Location ● ●

Max-Forwards ●

MIME-version ● ●

Pragma ● ●

Proxy-Authenticate ●

Proxy-Authorization ●

Range ●

Referer ● ●

Retry-After ● ●

Server ● ●

TE ●

Title ●

Trailer ●

Transfer-Encoding ●

Upgrade ●

URL ●

User-Agent ● ●

Vary ●

Via ●

Warning ●

WWW-Authenticate ● ●

A.3 HTTP 1.1 Support

One way to assess the level of http 1.1 support relies on re-
ports from implementers themselves. The World Wide Web
Consortium allows developers to report the status of their
implementations and to indicate which http 1.1 features

HTTP Versions 235

they support and which they do not. It appears that the re-
porting mechanism has been little used since 1998, but tables
a.3, a.4, and a.5 summarize the results of those reports.

Some caution is definitely in order when interpreting these
results for at least four reasons. First, the information is not
particularly recent, and it certainly does not represent the
newest releases of popular http clients and servers. It is
quite possible (even likely) that vendors have changed their
support for http 1.1 since 1998. Second, the data set is rather
small. It represents the reports of only 14 client implementa-
tions, 18 server implementations, and 8 proxy implementa-
tions; in all cases that’s far fewer than the number of
implementations that exist today on the Web. Third, the in-
formation was reported by the implementers themselves and
was not verified or audited by an outside party. Finally, in a
lot of cases the total number of implementations supporting
a feature may be much less important than knowing which
ones support that feature. If, for example, a particular feature
is available only in two Web browsers but those two repre-
sent 95 percent of the Web browser market, the lack of sup-
port by other implementations may not matter to some
applications.

Table A.3 Methods Supported by HTTP 1.1 Systems in 1998

Method Clients Servers Proxies

CONNECT 64% 39% 75%

DELETE 50% 50% 38%

GET 100% 100% 100%

HEAD 93% 100% 100%

OPTIONS 43% 56% 50%

POST 93% 100% 100%

PUT 64% 67% 50%

TRACE 50% 67% 50%

236 HTTP Essentials

Table A.4 Headers Supported by HTTP 1.1 Systems in 1998

Header Clients Servers Proxies

Accept 86% 83% 100%

Accept-Charset 64% 67% 63%

Accept-Encoding 71% 67% 63%

Accept-Language 64% 72% 63%

Accept-Ranges 57% 67% 50%

Age 57% 39% 63%

Allow 43% 83% 63%

Authorization 86% 94% 88%

Cache-Control 86% 94% 100%

Connection 100% 94% 100%

Content-Encoding 93% 89% 88%

Content-Language 57% 72% 63%

Content-Length 93% 94% 100%

Content-Location 64% 56% 63%

Content-MD5 29% 50% 38%

Content-Range 64% 72% 63%

Content-Type 86% 100% 100%

Date 86% 100% 100%

ETag 64% 78% 63%

Expect 36% 50% 38%

Expires 57% 78% 63%

From 64% 44% 63%

Host 100% 100% 100%

If-Match 57% 72% 63%

If-Modified-Since 86% 100% 100%

If-None-Match 43% 67% 50%

If-Range 43% 50% 38%

If-Unmodified-Since 50% 78% 63%

Last-Modified 64% 83% 63%

Location 79% 78% 63%

HTTP Versions 237

Table A.4 continued

Header Clients Servers Proxies

Max-Forwards 43% 28% 63%

Pragma 86% 83% 100%

Proxy-Authenticate 93% 44% 88%

Proxy-Authorization 93% 44% 88%

Range 64% 67% 63%

Referer 64% 61% 50%

Retry-After 43% 39% 50%

Server 57% 83% 63%

TE 43% 22% 25%

Trailer 36% 17% 25%

Transfer-Encoding 86% 89% 88%

Upgrade 29% 22% 38%

User-Agent 93% 67% 100%

Vary 43% 61% 63%

Via 64% 44% 88%

Warning 50% 28% 63%

WWW-Authenticate 86% 94% 100%

Basic Authentication 93% 94% 100%

WWW-Authenticate Digest 14% 50% 13%

qop-options auth 7% 17% 0%

qop-options auth-int 7% 6% 0%

Authorization Digest 14% 50% 13%

request qop auth 7% 17% 0%

request qop auth-int 7% 6% 0%

Authentication-Info Digest 14% 28% 13%

response qop auth 7% 17% 0%

response qop auth-int 7% 6% 0%

Proxy-Authenticate Basic 79% 39% 75%

Proxy-Authenticate Digest 14% 11% 13%

continues…

238 HTTP Essentials

Table A.4 Headers Supported by HTTP 1.1 Systems (continued)

Header Clients Servers Proxies

Proxy qop-options auth 7% 0% 0%

Proxy Authorization Digest 14% 11% 13%

Proxy request qop auth 7% 0% 0%

Proxy request qop auth-int 7% 0% 0%

Proxy Authentication-Info Digest 14% 6% 13%

Proxy response qop auth 7% 0% 0%

Proxy response qop auth-int 7% 0% 0%

Table A.5 Status Codes Support in HTTP 1.1 Systems in 1998

Status Clients Servers Proxies

100 Continue 71% 72% 63%

101 Switching Protocols 29% 28% 38%

200 OK 100% 100% 100%

201 Created 50% 50% 38%

202 Accepted 36% 33% 25%

203 Non-Authoritative Information 29% 28% 25%

204 No Content 64% 50% 50%

205 Reset Content 29% 22% 25%

206 Partial Content 57% 61% 50%

300 Multiple Choices 43% 39% 38%

301 Moved Permanently 93% 83% 88%

302 Found 64% 72% 50%

303 See Other 64% 39% 50%

304 Not Modified 86% 94% 100%

305 Use Proxy 57% 28% 50%

307 Temporary Redirect 86% 44% 75%

400 Bad Request 86% 94% 88%

401 Unauthorized 100% 100% 100%

402 Payment Required 64% 44% 88%

HTTP Versions 239

Table A.5 continued

Status Clients Servers Proxies

403 Forbidden 86% 94% 100%

404 Not Found 86% 100% 100%

405 Method Not Allowed 64% 72% 63%

406 Not Acceptable 64% 50% 63%

407 Proxy Authentication Required 93% 44% 88%

408 Request Timeout 50% 39% 25%

409 Conflict 50% 39% 38%

410 Gone 43% 22% 25%

411 Length Required 64% 50% 50%

412 Precondition Failed 57% 61% 50%

413 Request Entity Too Large 50% 33% 38%

414 Request-URI Too Long 50% 28% 38%

415 Unsupported Media Type 50% 33% 38%

416 Requested Range Not Satisfiable 57% 44% 50%

417 Expectation Failed 43% 39% 38%

500 Internal Server Error 57% 78% 63%

501 Not Implemented 57% 83% 63%

502 Bad Gateway 43% 28% 38%

503 Service Unavailable 64% 44% 63%

504 Gateway Timeout 57% 44% 63%

505 HTTP Version Not Supported 43% 56% 38%

241

APPENDIX B

HTTP in Practice —
Building Bullet-Proof Web Sites

Although http—as a network protocol—is certainly an in-
teresting and critical topic, ultimately we use protocols to
build systems and services. In the case of http, those sys-
tems and services are most commonly Web-based. In this
appendix, we step back a little from the protocol itself and
explore Web sites from an overall system perspective. Clearly,
this approach is specific to a single http-based application;
however, it provides important context for http as a proto-
col, as well as the many supporting protocols we’ve seen in
previous chapters. Lessons learned in building Web site ar-
chitectures are valuable in other applications of http as well.

The subject of this appendix is building bullet-proof Web
sites. For our purposes “bullet-proof ” Web sites possess three
critical attributes: They are secure, they are reliable, and they
are scalable. Security protects Web sites and their users from
malicious parties. It prevents malicious parties from disrupt-
ing the operation of a site or from accessing users’ confiden-
tial information. Reliability (which, in technical jargon, is
more properly called availability, see the sidebar) protects

242 HTTP Essentials

Web sites from failure, failure of a site’s own systems or of
the infrastructure on which it relies. Scalability protects a site
against success. A scalable Web site can gracefully accom-
modate a rapid and substantial growth in the number of its
users.

Not surprisingly, the qualities that make up a bullet-proof
site are related to each other. In many cases the tools and
techniques that address reliability also solve scalability prob-
lems, and in some cases an approach that improves scalability
sacrifices security. This appendix, therefore, doesn’t consider
each of the key bullet-proof qualities in isolation. Rather,
we’ll look at a Web site from the outside-in, considering all
of the tools and techniques together as we look deeper into
the site’s architecture. We begin with something critical to
any Web site: its connection to the Internet. Then we look at
the systems and infrastructure that make up a Web site. The
third section examines architectures that protect actual Web
applications themselves. In the fourth section we discuss
management and monitoring processes needed to keep a
Web site up. Finally, the appendix concludes by putting all
the elements together in a comprehensive, example site.

B.1 The Internet Connection

As tempting as it is to worry about application software, da-
tabase management systems, and operating systems, the most
vulnerable part of any Internet-based architecture is its
Internet connection. An Internet connection, after all, is a
site’s very lifeline to the Web. That role makes the connec-
tion critical for reliability and scalability, and, as the entry
point for malicious parties, it can be the focus of many secu-
rity attacks.

B.1.1 Redundant Links

One of the more challenging aspects of engineering a Web
site’s Internet connection is protecting that connection from

Reliability and Availability

In the engineering of complex

systems, the terms reliability and

availability have precise meanings.

A reliable system provides the

correct response; an available

system is always able to provide

some response. Ultimately, of

course, users want both reliability

and availability. When a banking

customer wants to check her

balance online, she expects her

bank’s Web site to be up and

running (available), and she

expects the balance it advertises

to be accurate (reliable). Of the

two qualities, however, Web site

architecture can really influence

only availability. For that reason,

this appendix considers the

requirements for highly available

Web sites, even though, in

common usage, that quality is

often called reliability. Availability

is often expressed as a percentage

of the time that a system can be

accessed by its users. The standard

for the U.S. telephone network is

99.999 percent availability, which

represents about 5 minutes of

downtime in a year. Even the

much less ambitious goal of 99.9

percent availability barely permits

one business day of downtime

each year.

Building Bullet-Proof Web Sites 243

failure. In all approaches the key is redundancy—have the
site support more than one Internet connection. It’s not
normally sufficient, however, just to have two physical con-
nections; equally important is to ensure that the Internet
connections are supplied by different Internet Service Pro-
viders. In many cases a connection failure is due to opera-
tional or systems problems at an isp, and such problems can
affect all of that isp’s connections.

The most straightforward way to provide redundancy is to
use mirrored Web sites. In other words, create two (or more)
separate sites, each with its own connection to the Internet.
Figure b.1 illustrates the configuration.

With this approach, the contents of the different physical
sites must be kept identical. Typically this is practical only
for static Web sites. If users can dynamically change the state
of the site (by, for example, updating their account informa-
tion), it is difficult to instantly reflect such changes in the
backup site.

In addition to creating primary and backup sites, mirroring
requires special configuration of the site’s Domain Name
System (dns) server. dns translates between human-readable
host names and numerical ip addresses. For example, when
users enter the Web address www.microsoft.com in their
Web browser, dns servers may identify the true destination
as 207.46.130.45.

With mirroring, the dns server must provide ip addresses of
both sites to client queries. Web browsers that fail to connect
with the primary Web server can then automatically attempt
a connection with the backup. Unfortunately, the switchover
from primary to backup is completely under the control of
the client, and typical client behavior may be counter to a
site’s availability requirements.

Clients generally decide on an ip address only when they
attempt to initiate a connection to a Web site. Web browsers
will not automatically switch to a backup ip address after a

Provider Diversity

Whether you’re designing your

own Web site or relying on a Web

hosting provider, making sure that

your different Internet

connections truly come from

different ISPs can be surprisingly

difficult. The telecommunications

industry relies heavily on

resellers—providers that resell the

facilities of others. That means that

the company from which you

purchase one of your Internet

connections may not be the same

company that’s actually providing

it. If you’re not careful you may

end up paying two different ISPs

that are, in fact, using the same

infrastructure, which defeats one

of the main reasons for using

multiple ISPs in the first place. Also

pay attention to the details of your

Internet connections. The leased

line connections to your building

(frequently provisioned by the

local telephone company) may

rely on the same physical

infrastructure even for multiple

ISPs. This problem is not just

theoretical; companies that were

convinced they had multiple

Internet connections have been

surprised when an errant backhoe

eliminated both connections at

once because the phone company

had used the same physical

conduit to bring both leased lines

into the building.

244 HTTP Essentials

connection has been established. Once a page has begun
downloading, the connection is established and switchover is
not possible. (With http persistence, this statement is true
even if the page contains multiple objects.) If the primary
Web server fails during page downloads, users are forced to
wait until the download times out, at which point they can
click “Refresh” on their browsers to initiate a new connec-
tion. With common Web browsers, the timeout period is
about one minute. Even this brief period is significant, as
research suggests that consumers will wait no longer than
about eight seconds before taking their business elsewhere.

Global load balancing addresses some of those concerns by
giving the site itself more control over the mirroring. As fig-
ures b.2 and b.3 show (and section 5.1 discusses) a global load
balancing appliance acts as either a dns server or an http
redirect server for the Web site. When the client requests the
ip address for a Web site (figure b.2) or initiates an http
session (figure b.3), the global load balancer determines
which Web server offers the best performance to the client
and directs the client to that server. The client then commu-
nicates directly with the designated Web site.

To ensure that clients are not directed to Web servers that
have failed, the global load balancer may continuously
monitor the health of each server. When it detects a failure,

Backup ISP

Primary ISP

Internet

Primary
Web Server

Backup
Web Server

Figure B.1 �
Mirroring Web sites to multiple
servers, each connected to the

Internet through a different service
provider, significantly improves the

reliability of the overall Web site.

Building Bullet-Proof Web Sites 245

it responds to all queries with ip addresses of only the
surviving sites.

The main benefit of global load balancing over simple dns-
based mirroring is responsiveness to problems. dns mainte-
nance is typically a manual process. Practically, that means
it’s not possible for a simple dns-based approach to auto-
matically stop returning ip addresses of failed servers.
(Changing the response of a dns server requires manual re-
configuration.) That’s why it is essential for dns servers to

Web Browser

Backup ISP

Primary ISP

Internet

Primary
Web

 Server

Backup
Web

ServerGlobal Load
Balancer

DNS Query1

DNS Response2

HTTP Session3

Web Browser

Backup ISP

Primary ISP

Internet

Primary
Web

Server

Backup
Web

ServerGlobal Load
Balancer

HTTP Request1

HTTP Redirect2

HTTP Request3

� Figure B.2
A global load balancer can use DNS
responses to route clients to one Web
server or another. The load balancer
acts as the DNS server for the site.

� Figure B.3
HTTP redirection is another technique
that allows global load balancers to
route clients to different Web servers.
In this example the load balancer acts
as the site’s primary Web server, but,
instead of serving the site’s content, it
merely redirects clients to the real
Web servers.

246 HTTP Essentials

return all ip addresses. The burden of detecting a failed site
and switching to the backup is left to the client. Global load
balancers, on the other hand, automate the selection of ap-
propriate dns responses. Their dns responses are based on
up-to-the-minute assessments of the status of the primary
and alternate Web sites. This control lets the global load bal-
ancer make the decision to switch to a backup server, a deci-
sion that the load balancer can make much more quickly
than a Web browsing client. (Of course, global load balancers
offer the additional benefits of greater performance and
scalability.)

Unfortunately, when used in the dns mode, global load bal-
ancers don’t provide much help after the dns query has been
resolved. If a Web server fails after a client has been given its
ip address, only the client can decide to retry using an alter-
nate ip address. In fact, even when a client might be expected
to issue a new dns query (and thus receive the latest infor-
mation from a load balancer), the load balancer doesn’t have
the opportunity. Intermediate dns servers and client systems
often cache the results of dns queries, ostensibly to improve
performance. (In theory, dns entries include a “Time To
Live” value that should prevent such caching. In practice,
however, many intermediate servers and clients ignore this
value.)

 As an alternative to the dns approach, most load balancers
may operate by redirecting http requests rather than resolv-
ing dns queries. In this approach, the load balancer itself is
established as the nominal Web server for the site. Instead of
responding directly to http requests, though, it redirects the
clients to one of the real Web servers.

B.1.2 Multi-homing

Despite their utility, simple mirroring and global load bal-
ancing both suffer from a significant limitation—the primary
and backup Web sites must be identical. As long as the site’s
content is relatively static, this restriction may be acceptable.

Building Bullet-Proof Web Sites 247

Dynamic, data-driven Web sites, however, cannot support
multiple, isolated Web servers. If a user checks account status
after making a Web purchase, the status should reflect the
purchase, even if a failover occurs between the two com-
mands and they are sent to different physical Web servers.

Network protection for dynamic Web sites requires multiple,
physical connections to the same physical site, as figure b.4
illustrates. Again, to protect against the failure of an entire
provider, each network connection must be from a different
isp. This factor makes the configuration considerably more
complex than it may at first appear.

The issue with redundant connections is ip addressing.
Normally, when an isp provides Internet access to an enter-
prise, the isp assigns ip addresses for that enterprise’s sys-
tems. In this case, however, more than one isp provides
access. What ip address should the Web server use?

The simplest answer is to use ip addresses from both service
providers. Nearly all Web server platforms (certainly includ-
ing unix and Windows) have the capability of assigning
multiple ip addresses to a given network interface. In such a
configuration, clients could reach such a system using either
ip address. If the Domain Name System is configured to
provide both ip addresses to any query, clients would auto-
matically fall back to the backup address if the primary were
inaccessible. Of course, this approach suffers from the same
responsiveness issues as dns mirroring. It’s up to Web brows-
ing clients to detect and respond to network failures, and
clients can choose from the ip addresses only when they first

Backup ISP

Primary ISP

Internet

Web Server

� Figure B.4
With multi-homing, a Web
server connects to the Internet
through multiple service
providers simultaneously.

248 HTTP Essentials

try to establish a connection. If the ip address becomes inac-
cessible after the connection is established, then the clients
have to wait for the connection to time out.

Web sites with redundant network connections can improve
their availability significantly if they acquire their own ip
addresses instead of relying on addresses assigned by an
Internet Service Provider. Enterprises with their own ip ad-
dresses are reachable through any isp connection and, should
a primary connection fail, the Internet will automatically
reroute traffic through a backup isp. This rerouting takes
only a second or two, and it is not normally noticeable to
users.

Provider-independent ip addresses, combined with redun-
dant Internet connections, may seem like an ideal approach
for high-availability Web site architectures. There are, how-
ever, drawbacks. In this case the most significant obstacle is
complexity. Administering your own ip addresses, and mak-
ing sure that everyone else on the Internet can reach them,
are not trivial tasks. In effect, you’re becoming your own
Internet Service Provider.

Operating such a configuration requires support for appro-
priate Internet routing protocols, in this case the Border
Gateway Protocol (bgp). Major Internet service providers use
bgp to tell each other how to route to various ip addresses.
Because you’re acting as your own isp, you’ll need to operate
your own bgp router or server.

You will also need the cooperation of your ISPs, as they must
configure their bgp systems to communicate with your sys-
tem. The entire process is not for the faint of heart, and it
requires a lot of care and attention. A misconfigured or mal-
functioning bgp system can, in theory, bring down the entire
Internet. (Fortunately, there are protection mechanisms built
into the Internet; you probably don’t want to be the one to
test those mechanisms, however.) It is essential, therefore,

Getting IP Addresses

To get IP addresses for your

enterprise that are independent of

any service provider, you have to

follow much the same procedure

as ISPs do themselves. That

generally means contacting the

appropriate authority and

justifying your request. Today, IP

addresses are the responsibility of

the Internet Assigned Numbers

Authority, or IANA (www.iana.org).

IANA delegates the actual

assignment to different regional

bodies. In North America, that’s

the American Registry for Internet

Numbers (www.arin.net). In

Europe, the IP addressing

authority is the Réseaux IP

Européens (www.ripe.net); for

Asia-Pacific, it’s the Asia-Pacific

Network Information Center

(www.apnic.net). Eventually,

authority over IP addresses will

belong to the Internet

Corporation for Assigned Names

and Numbers, or ICANN

(www.icann.org).

Building Bullet-Proof Web Sites 249

that enterprises adopting this technique have sufficient ex-
pertise in Internet routing and network connectivity.

B.1.3 Securing the Perimeter

A Web site’s Internet connection is not just how legitimate
users access the site; it’s also the point of entry for malicious
parties. Protecting these entry points is imperative, and the
tool for doing so is a firewall. Figure b.5 shows a simplified
view. Of course, a truly bullet-proof site will use redundant
firewalls (and redundant Web servers as well).

As guardians at the gates of a Web site, firewalls have two
main tasks. First, they ensure that Internet users can access
only appropriate parts of the site. And second, they ensure
that users access those parts only in appropriate ways. The
two tasks may sound similar, but they actually differ in im-
portant ways. The first job, allowing access to only appropri-
ate parts, prevents malicious parties from accessing systems
and services within your Web site. Those systems may in-
clude other physical systems (such as database servers) or
non-Web-related services on your Web servers themselves
(such as file sharing). The second task, preventing inappro-
priate access to appropriate parts of the Web site, protects
against denial-of-service attacks. In a denial-of-service at-
tack, a malicious party doesn’t try to gain access to inappro-
priate information; instead, the party simply tries to tie up
system resources so thoroughly that legitimate users cannot
receive service. Sending a flood of regular http requests, for
example, can bog down a Web server. Fortunately, most
competent firewalls can recognize and thwart these types of
attacks.

Backup ISP

Primary ISP

Internet

Web
Server

Firewall

� Figure B.5
A firewall guards the entrance to a
Web site from the Internet. It sees all
network traffic destined to systems
within the Web site, and it can block
messages that are not appropriate.

250 HTTP Essentials

B.2 Systems and Infrastructure

Once a Web site has ensured that its connection to the
Internet is bullet-proof, attention turns to the systems and
infrastructure within the site. Here too we find a standard set
of tools and techniques that ensure a site’s reliability, scalabil-
ity, and security, all of which we’ll examine next. The site
mirroring approach, described in the previous section, pro-
tects against system and infrastructure failures in addition to
Internet connection failures. Local load balancing and server
clusters also enhance reliability, and they can be even better
tools for scalability. The common architecture for security
within a Web site organizes the systems in multiple layers,
with a demilitarized zone (dmz) to act as a buffer between
the Internet and sensitive information.

B.2.1 Reliability through Mirrored Web Sites

Although we discussed mirrored Web sites (and global load
balancing) in the context of protecting the Internet connec-
tion, the same techniques also protect against system failures
within a site. If a primary Web server fails, even though its
Internet connection remains active, clients can still detect the
failure and switch to a mirrored site, as figure b.6 illustrates.

Backup ISP

Primary ISP

Internet

Primary
Web Server

Mirrored
Web Server

Web Browser

Client switches to mirrored site2

Client cannot
communicate
with failed server

1

Figure B.6 �
Web site mirroring offers protection

against server failures, as all clients
can be rerouted to a backup system.

When, in this example, the Web
browser realizes that it cannot

communicate with the primary server,
it switches to the backup site.

Building Bullet-Proof Web Sites 251

Of course, mirroring suffers from the very same limitations
described earlier—the speed at which the architecture re-
sponds to failures is under the control of the client rather
than the site itself. Also, mirrored architectures are effective
only for relatively static sites. As long as the site does not use
a lot of dynamic content, though, mirroring may still be an
excellent approach for making the site reliable.

The key to evaluating mirroring is to match the technology
with the site’s availability requirements. As a rule of thumb,
it may take as long as three minutes to detect a primary fail-
ure and recover by connecting to a backup site. (The actual
time depends on many factors, including the specific browser
software, the user’s attentiveness, and the download time for
the page.) Figure b.7 graphs the effect of three-minute fail-
ures on overall availability. If, for example, a site requires 99.9
percent availability, it can tolerate as many as 14 failures each
month. This level of reliability is easily attainable with cur-
rent Web servers. Higher availability requirements, however,
may be difficult to satisfy solely with site mirroring.

B.2.2 Local Load Balancing and Clustering

Not all Web sites can tolerate the three-minute recovery pe-
riod that mirroring imposes. Either the cumulative effect of

Site Availability

99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

0 20 40 60 80 100

Three-Minute Site Failures per Month

99.95% = 7 failures

99.9% =
14 failures

99.5% =
73 failures

� Figure B.7
Relying on the browser to recover
from a site failure can take as long as
three minutes. A site’s availability
requirements determine the number
of such failures it can tolerate.

252 HTTP Essentials

multiple three-minute outages may exceed the site’s
availability requirements, or the consequences of a sustained
three-minute outage may be too severe. For those situations,
local load balancing and clustering offer much quicker recov-
ery times.

Local load balancing and clustering can also significantly
enhance the scalability of Web sites. Load balancing, in par-
ticular, lets site administrators instantly and transparently
increase their site’s capacity.

Local load balancing resembles global load balancing, in that
a network appliance receives requests from clients and dis-
tributes them among multiple Web servers. With local load
balancing, however, all systems (appliances and Web servers)
share a common local network. Figure b.8 shows a typical
configuration.

As with global load balancing, the real benefit of local load
balancing is in site scalability and performance; however, by
monitoring Web server health and instantly switching away
from failed systems, local load balancers offer subsecond re-
covery from failures. Generally, users are not even aware that
a switchover has taken place.

Internet

Load
Balancer

Web Server Web Server Web Server

Load
Balancer

Figure B.8 �
Local load balancing is generally

confined to one physical location, but
it allows for quick recovery from failed
systems in a way that is often invisible

to browser clients. As this example
shows, sites with high availability

requirements usually deploy
components such as load balancers in

redundant pairs. If one load balancer
fails, the other takes over.

Building Bullet-Proof Web Sites 253

Another difference between local and global load balancers is
their normal method of operation. Most local load balancers
can respond to dns requests and perform http redirection.
For maximum responsiveness, however, local load balancers
interpose themselves directly between the Internet and the
Web servers. As http traffic flows through a load balancer,
the balancer distributes that traffic to appropriate servers, as
figure b.9 illustrates.

As the figures indicate, high availability architectures deploy
local load balancers in pairs, with one serving as a backup to
the other. This configuration is essential in preventing the
load balancer itself from becoming a single point of failure.
Evaluate load balancers not just on how fast they detect and
recover from a Web server failure, but also on how fast they
recover from the failure of one physical balancer. High-
quality load balancers can recover quickly enough that users
do not notice.

Server clusters are an alternative to local load balancing.
Clustering combines many physical systems into a single,

Internet

Load
Balancer

Web Server Web Server Web Server

Load
Balancer

Web Browser Web Browser

HTTP
Session

HTTP Session

� Figure B.9
Local load balancers distribute
requests among multiple Web servers.
They can automatically detect faults
and route requests around failed
systems. Local load balancers act
transparently to Web clients, so they
can switch a client to a new server
almost immediately, well before the
client even notices a problem.

254 HTTP Essentials

logical system, as figure b.10 illustrates. Should one physical
server fail, the cluster continues to operate with the remain-
ing systems.

For static Web sites, server clusters are generally not as desir-
able as local load balancing. Clusters are much more complex
to administer and maintain, and they are usually more ex-
pensive to deploy. For full effectiveness, clustering also re-
quires special support from applications, in this case the Web
server software. On the other hand, clusters can play an im-
portant role in protecting dynamic Web applications, as the
next section discusses.

B.2.3 Multi-Layer Security Architectures

The previous section introduces firewalls as the primary
technology for securing the perimeter of a Web site.
Firewalls are also important for providing security within a
site. Figure b.11 shows a typical security architecture for
bullet-proof Web sites. As the figure shows, firewalls create a
multi-layer architecture by bracketing the site’s Web servers.
Exterior firewalls separate the Web servers from the Internet
outside the site; interior firewalls separate the Web server
from database servers deeper within the site.

By creating multiple layers, this architecture adds more secu-
rity to the core information that a Web site manages—
information in the site’s database. The figure highlights the
rules that each firewall contains. As long as the site is a pub-
lic Web site, the exterior firewall must allow anyone access to

Cluster
ConnectionServer Server

Logical Server

Local Network

Figure B.10 �
Clustering bonds multiple physical

systems together to act as one
logical system. In most

implementations the logical system
can automatically recover from the

failure of a physical system.

Building Bullet-Proof Web Sites 255

the Web servers. Instead of limiting who can access the site’s
systems, the exterior firewall’s main job is to limit which sys-
tems can be accessed. In particular, the exterior firewall al-
lows outside parties to communicate only with the Web
servers; it must prevent outside parties from accessing any
other system within the site. The interior firewall, on the
other hand, focuses its protection on who can access the da-
tabase servers, not what systems can be accessed. Specifically,
the interior firewall makes sure that the Web server is the
only system that can access the database server.

This architecture adds an extra layer of protection for the
site’s critical data. An attacker can compromise either of the
two firewalls and still not gain access to the protected infor-
mation. A successful attack requires breaching both firewall
systems.

B.3 Applications

So far we’ve looked at bullet-proofing the infrastructure of a
Web site architecture by protecting both its network connec-
tivity and its systems and servers. In this section we turn our
focus to the Web application itself. Bullet-proofing Web ap-
plications is actually more complex than it may appear, pri-
marily because of the characteristics of the http protocol.
The first subsection explores those characteristics and their

Internet

Web
Server

Exterior
Firewall

Interior
Firewall Database

Server

DMZ

Only allow access to
Web Server(s)

Only allow access from
Web Server(s)

� Figure B.11
Web sites often employ a multi-tier
firewall configuration, dividing the
site into a public (the Internet), a
private (protected databases), and a
“demilitarized” zone in between.

256 HTTP Essentials

effect on the dynamics of Web applications. Then we’ll see
how servers can overcome those limitations through applica-
tion servers, a new type of product designed primarily for
Web applications. The third subsection discusses another
important component of Web applications—database man-
agement systems. The section concludes with a discussion of
application security.

B.3.1 Web Application Dynamics

The fact that we’re even discussing dynamic Web applica-
tions is a testament to the flexibility of the Web’s architecture
and the ingenuity of Web developers. The World Wide Web,
after all, was originally conceived as a way of organizing rela-
tively static information. In 1989, it would have been hard to
imagine how dynamic and interactive the Web would be-
come. In fact, the communication protocols and information
architecture of the Web don’t support dynamic applications
naturally and easily.

The fundamental challenge for dynamic Web applications is
overcoming the stateless nature of the Hypertext Transfer
Protocol. As we’ve seen, http is a simple request-and-
response protocol. Clients send a request (such as a url) and
receive a response (a Web page). Basic http has no mecha-
nism that ties one request to another. So, when a Web server
receives a request for the url corresponding to “account
status,” http can’t tell the server which user is making the
request. That’s because the user identified herself by logging
in using a different url request.

A critical part of dynamic Web development is overcoming
the stateless nature of http and tracking a coherent user
session across many requests and responses. Protecting this
session information is also the key to providing high-
availability Web applications. Systems and networks may fail,
but, as long as the session state is preserved, the application
can recover.

Tracking Sessions

Although there are several

esoteric approaches available,

most Web sites rely on one of two

ways to track Web sessions across

multiple HTTP requests. One

approach is URL mangling. This

technique modifies the URLs

within each Web page so that they

include session information. When

the user clicks on a link, the

mangled URL is sent to the Web

server, which then extracts the

session information from the

request. A second approach uses

cookies, which explicitly store

state information in the user’s Web

browser. The server gets cookie

information from the browser

before it responds to any request.

Building Bullet-Proof Web Sites 257

There are two different levels of protection for Web session
information: persistence and sharing. With persistence, ses-
sion information is preserved on disk rather than in memory.
If a Web server fails, it can recover the session information
when it restarts. Of course, this recovery is effective only if
the server is capable of restarting. Also, the site is not avail-
able during the restart period.

A more thorough method of protecting state information is
sharing it among multiple systems. If one system fails, a
backup system can immediately take over. This recovery pro-
tects the session while the failed system restarts, and it can
preserve the session even if the failed system cannot be re-
started.

B.3.2 Application Servers

The difficulty of tracking session state (much less protecting
it from failure) is one of the significant factors that has led to
the creation of a new type of product: application servers.
Although each vendor has its own unique definition,
application servers exist to run Web-based services that
require coordination of many computer systems. (The term
“application,” in this sense, refers to a particular business ser-
vice, not a single-purpose software program such as an Excel
or Photoshop.) Figure b.12 highlights the application server’s
role as the central coordinator for a business.

Even though application servers were not designed specifi-
cally to make Web applications highly available, their central
role in a business architecture makes availability and reliabil-
ity critical. As a consequence, some application server prod-
ucts have extensive support for high-availability applications.
Even if a particular Web site architecture does not require
the coordination of disparate systems like application server
products advertise, the Web site may still take advantage of
application server technology just to improve its availability.

258 HTTP Essentials

Application servers tend to support high availability using
either of two general approaches. The first approach deploys
the application server software on server clusters. We first
discussed server clusters in the context of Web servers, but,
as we noted then, software that runs on server clusters must
be specifically designed to take advantage of clusters. In gen-
eral, Web server software is not designed in that way; how-
ever, some key application servers are. With this
configuration, illustrated by figure b.13, the application server
software appears as a single entity to the Web servers it sup-
ports. The clustering technology handles failover using its
normal recovery mechanisms.

Some application servers choose to support high availability
with their own mechanisms rather than relying on server
clusters. This approach gives the application server more
control over failover and recovery, and it keeps the software
from becoming dependent on a particular operating system’s
cluster support. Because most application servers can run on

Web Server Web Server

Application
Server

Application
Server

Mainframe Minicomputer

Database

Figure B.12 �
Application servers can become the

focal point of a dynamic Web site,
coordinating among Web servers,

databases, and legacy systems. As the
master coordinator of a site’s

responses, application servers can
naturally assume some responsibility

for site availability.

Building Bullet-Proof Web Sites 259

multiple operating systems, this independence may be an
important factor in their approach to high availability.

Although the specifics vary by vendor, using an application
server’s own fault tolerance generally results in a configura-
tion similar to figure b.14. One factor that the figure high-
lights is the need to distribute the Web servers’ requests
among multiple application servers, and to automatically
switch those requests away from any failed systems. The ex-
act mechanism that’s most appropriate here depends on the

Web Server Web Server

Application
Server

Application
Server

Application
Server

Dispatch
Requests

Web Server Web Server

Cluster
ConnectionServer Server

Application Server

� Figure B.14
Other application servers have their
own mechanisms for redundancy and
availability. Application servers that
take on this responsibility must
coordinate among themselves so that
one server can cover for another.

� Figure B.13
Some application servers run on
clustered systems, taking advantage
of the cluster’s fault tolerance and
recovery services. In such
configurations, the application server
software doesn’t have to worry about
failure and recovery itself.

260 HTTP Essentials

particular method the Web servers use to communicate with
application servers. Three different approaches are common,
as table b.1 indicates.

Table B.1 Supporting Multiple Application Servers

Dispatch Method Use

Local Load Balancers If the protocol for Web server to application

server communication is HTTP, standard local

load balancers can distribute requests appro-

priately.

Ethernet Switches Ethernet switches with layer 4 (or layer 7)

switching capabilities can usually distribute

multiple protocols, not just HTTP.

Multi-Use Systems The simplest approach may be to run both Web

server and application server software on the

same physical systems. The site’s protection

mechanism for Web server failures also pro-

tects against application server failures.

When evaluating application servers for high-availability
Web sites, it is important to look closely at the server’s ses-
sion-level failover support. Automating failover for individ-
ual sessions is a technical challenge, and some application
servers that advertise “high availability” support automated
failover by forcing users to restart entirely new sessions. This
behavior may be acceptable for some sites, but others may
require truly transparent failover.

B.3.3 Database Management Systems

One technology that is common to nearly all dynamic Web
sites is a Database Management System (dbms). Ultimately,
the information that drives the Web site—user accounts,
orders, inventory, and so on—must reside somewhere, and
the vast majority of sites choose to store it in some form of
database. If the Web site is to remain highly available, the
database management system must be highly available as
well. In this subsection we’ll take a brief tour of some of the

Building Bullet-Proof Web Sites 261

approaches that protect databases from failures. Two of the
approaches rely on hardware or operating system software,
while three are strictly features of the dbms applications
themselves.

The hardware clustering technology we’ve already discussed
is a common technique for protecting database systems. As
we’ve seen before, hardware clustering does require that the
application software include special features to take advan-
tage of its failover technology. In the case of database man-
agement systems, however, that support is widespread and
quite mature.

One technology that is completely independent of the data-
base application is remote disk mirroring. Remote disk mir-
roring uses special hardware and ultra-fast network
connections (typically via fiber optic links) to keep disk ar-
rays at different locations synchronized with each other. This
technology, which is common in the telecommunications
and financial services industries, is not really optimized for
high availability. It is, instead, intended mainly to protect the
information in a database from catastrophic site failures (a
fire, for example). Still, if there is an effective recovery plan
that brings the backup disks online quickly enough, remote
disk mirrors can be an effective component of a high-
availability architecture.

In addition to these two techniques that are primarily out-
side the scope of the dbms itself, most database systems sup-
port high-availability operation strictly within the dbms. The
approaches generally fall into one of three techniques: paral-
lel servers, replication, or standby databases.

The highest performing option is parallel servers, which es-
sentially duplicate the functionality of a hardware cluster
using only dbms software. Figure b.15 shows a typical con-
figuration. Multiple physical servers act as a single database
server. When one server fails, the remaining servers auto-
matically pick up and recover the operation. Recovery is gen-

DBMS Vendor Specifics

For our discussion of database

technology, we’ve tried to present

the issues and solutions in a way

that is independent of specific

database management systems.

Fortunately, most of the major

database vendors—IBM, Informix,

Microsoft, Oracle, and Sybase—

have similar features and options.

There are certainly differences

between the products, but, to cite

a specific example, for our

purposes Informix Enterprise

Replication, Oracle Advanced

Replication, and Sybase

Replication Server are roughly

equivalent. In addition to

implementation differences,

however, not all of the techniques

we describe are available from all

vendors. Microsoft, for example,

does not have a separate database

clustering product. Instead, SQL

Server relies strictly on the

clustering support of the Windows

operating system.

262 HTTP Essentials

erally transparent to the database clients such as Web servers
or application servers, which continue unaware that a failover
has occurred.

Another approach for protecting database systems is replica-
tion. Replication uses two (or more) separate database serv-
ers, along with database technology that keeps the two
servers synchronized. Replication differs from parallel servers
because it does not present the separate servers as a single
logical database. Instead, clients explicitly connect with one
or the other database, as figure b.16 indicates. (Some data-
base systems require that all clients connect with the same

Database
Server

Database
Server

Replication

Web Server
Application

Server

Database
Server

Database
Server

Parallel Database System

Web Server
Application

Server

Figure B.16 �
Database replication keeps multiple

copies of a database synchronized
with each other. If one database

system fails, clients can continue
accessing the other system.

Figure B.15 �
Parallel database configurations are

essentially clusters that have been
optimized for database applications.

As with traditional clustering
technology, the entire system

automatically recovers if one of its
components fails.

Building Bullet-Proof Web Sites 263

server, but more advanced implementations can support in-
teraction with the replicated servers as well.)

When a database server fails, the database clients must rec-
ognize the failure and reconnect to an alternate database.
Although this is not as transparent nor as quick as a parallel
server implementation, most database vendors have technol-
ogy to speed up the detection and reconnection considerably,
and it can generally (but not always) proceed transparently to
the database user.

The third database technology that can improve availability
is standby databases. With standby databases, all clients
communicate with a primary database server. As figure b.17
shows, that server keeps an alternate server informed of the
changes. The alternate server, however, is not usually syn-
chronized with the primary server in real time. Instead, there
is a time delay that can range from a few seconds to several
minutes and even longer. Should the primary server fail, the
alternate must be quickly brought up to date and all database
clients redirected to the alternate server. In this case, recovery

Database
Server

Database
Server

Standby
Logs

Web Server
Application

Server

� Figure B.17
Standby logs allow a database to keep
a record of all operations it performs.
This log can help recreate the state of
the database should the main system
fail. Such recovery, however, is rarely
fully automatic, so it may take much
longer than other methods.

264 HTTP Essentials

is not normally transparent to the users, and during the re-
covery process the Web site will be unavailable.

Although the time lag between changes to the primary and
alternate databases may seem like a disadvantage, in some
situations it may also be a significant advantage. If, for ex-
ample, an application executes a database query that corrupts
the database, a vigilant database analyst may intercept the
standby logs and delete the query before it executes on the
alternate database, thus preserving the data in the alternate
database. Any delays that the Web site introduces for this
purpose, however, should occur after the standby log is
moved to the alternate server. That provides the greatest pro-
tection from catastrophic site failures.

Although we’ve discussed each of these techniques in general
terms, it’s important to recognize that different dbms ven-
dors implement each approach differently. Choosing be-
tween the approaches, however, is generally a trade-off
between responsiveness and cost. As the chart in figure b.18
highlights, approaches that support rapid recovery are expen-
sive. They require a lot of communications traffic between
the physical components to keep them tightly synchronized.
This synchronization, in addition to requiring network
bandwidth, also slows the response of the server to normal
requests. Rapid recovery approaches are also more complex
and require the greatest skill to deploy and maintain. On the

Slow

Fast

Low High
Cost

Parallel
Servers

Replication

Standby
Database

Figure B.18 �
Database reliability technologies are

inevitably a trade-off between cost
and recovery speed. The faster the

recovery, the more expensive the
technology and its implementation.

Building Bullet-Proof Web Sites 265

other hand, approaches that minimize the complexity and
cost are not able to recover from failure as quickly.

B.3.4 Application Security

If the Web site interacts dynamically with its users, it may
wish to provide security for that interaction. Security may be
useful even if the interaction is nothing more than allowing
users to personalize or customize the pages; it certainly is
important if the site manages the users’ financial information
(e.g., an online bank) or conducts electronic commerce. The
first goal of application security is to verify the identity of the
end user. A second, optional goal is to ensure the privacy of
the information exchanged.

As we’ve seen in chapter 4, http has several mechanisms to
authenticate end users. As we also saw, however, many of
http’s mechanisms have easily exploited weaknesses. For
this reason, Web sites should be extremely careful in their use
of http authentication, making sure that the weaker, default
modes are not employed. This caution applies even if the site
is using authentication to protect information with relatively
little value. Human nature makes it hard to resist the temp-
tation to reuse passwords on multiple Web sites. And, al-
though a portal site may not think that its content justifies
strong authentication, if the portal site allows attackers to
intercept its users’ passwords, its users may be extremely un-
happy when their intercepted passwords are used to access
online brokerage accounts.

B.3.5 Platform Security

Security-conscious Web sites worry about the security of
their platforms as much as the security of their applications.
Today, nearly all Web sites rely either on Windows or Unix
as an underlying operating system for their servers, and
neither has been shown to be perfect in protecting against
network attacks. Other commercial software, including Web
servers and application servers, suffers a similar fate.

266 HTTP Essentials

Fortunately, the network security community is effective
both at discovering vulnerabilities and reporting them to the
responsible vendors. The vendors are usually well motivated
to respond rapidly with patches and fixes. The main
weakness in this process is its reliance on site administrators
to proactively monitor their vendors for updates and apply
those updates as they become available. It can be difficult for
administrators, under the gun for a myriad of other issues, to
find the time required to keep all products up to date. Bullet-
proof security, however, demands nothing less. Keep in mind
that as soon as a patch or fix is made publicly available, the
vulnerability the upgrade addresses is also publicly available.
And although it may take extremely clever engineers to
discover a vulnerability, exploiting a known vulnerability,
once it has been made public, can be trivial. Administrators
that do not keep their software completely up to date at all
times run a high risk of a security breach of their sites.

B.4 Staying Vigilant

So far in this appendix, we’ve looked at what it takes to de-
sign and deploy bullet-proof Web sites. Design and deploy-
ment are just the beginning, however. It is equally important
to make sure that a site stays available. That calls for network
management, monitoring, and intrusion detection, as well as
strict procedures for site maintenance and upgrades. This
section considers those issues.

B.4.1 External Site Monitoring

One of the most basic steps you can take to ensure that a
Web site remains available is to measure its availability. And
there is no better way to measure availability than to act as
users. Web site monitoring services exist just to make those
measurements.

Web site monitoring services generally rely on a network of
probes deployed across the Internet. As figure b.19 shows,

Building Bullet-Proof Web Sites 267

these probes periodically access a Web site by emulating ac-
tual users. The service collects the results from these access
attempts and presents them to an administrator, usually via a
secure Web site. Some services also provide immediate noti-
fication of site failures via email, pager, or telephone.

When evaluating site monitoring services, there are several
factors to consider. First, be sure the service’s primary focus
fits your requirements. Nearly all services provide informa-
tion on performance (such as download times) as well as
availability. If that’s important to you, look at those services
with a performance focus. If, on the other hand, availability
is your top concern, be careful not to pay for performance
measurements that you don’t need.

Another factor is the depth the service provides. Some ser-
vices simply perform quick checks of static urls. Others are
much more sophisticated and can even carry out a complete
ecommerce transaction. Monitoring services can also check
other applications, such as email and file transfer servers.

Internet

Web Site

Site Probe

Site Probe

Site Probe

� Figure B.19
Web site monitoring relies on a
network of probes to periodically
emulate users and simulate
transactions with the site. The probes
can measure the site’s responsiveness
and detect site failures.

268 HTTP Essentials

The number and location of the monitoring probes are also
important. If your Web site serves a significant international
audience, you may want to focus on services that have probes
throughout the world, rather than strictly in the United
States. Whatever your users’ profile, an ideal monitoring ser-
vice will have a probe configuration that matches that profile
as closely as possible.

Also, check out the frequency of the probes’ measurements.
Some services check your site only once an hour, or even
once a day. If high availability is critical, such infrequent
checks may not be sufficient.

As a additional note, there is little reason (other than cost) to
limit yourself to a single monitoring service. The perfect
monitoring service for your Web site may, in fact, be a com-
bination of two or more services.

Finally, if your Web site is particularly specialized or, per-
haps, is not intended for a general Web audience, an alterna-
tive to monitoring services is deploying your own monitoring
software. The same issues that are important for a monitor-
ing service—level of monitoring, location of probes, and so
on—are important with this approach as well. Deploying
your own monitoring application, however, gives you com-
plete control over the implementation decisions.

B.4.2 Internal Network Management

Web site monitoring services provide an important measure
of a Web site’s health, but by themselves, they won’t give you
a complete picture of your site. That’s because external
probes can measure your site only as if they were users; they
can’t tell you what’s going on behind the scenes. That visibil-
ity requires a network and systems management application.

To understand the importance of internal network manage-
ment, consider what happens when one of the systems in a
two-node hardware cluster fails. If the cluster is operating
correctly, then the other system will take over. The failover

Building Bullet-Proof Web Sites 269

should be transparent to users—and to any external monitor-
ing service. Your Web site, however, is now at risk. It has just
become vulnerable to a single point of failure. If the remain-
ing cluster node also fails, the site goes down. Obviously, in
such a situation you need to know about the failed cluster
node quickly so that it can be repaired or replaced. It’s the
job of an internal network management system to alert you
to the problem.

The common denominator for most network management
applications is the Simple Network Management Protocol
(snmp). As figure b.20 shows, management applications use
snmp to query the status of network devices, including serv-
ers, switches, hubs, routers, and firewalls. Even some unin-
terruptible power supplies support snmp. An effective
management application collects snmp-based information
and presents a coherent, overall view of a network’s health to
its users.

Internet

Network
Management

System

� Figure B.20
A network management system
monitors the health of all network
devices that make up a Web site.

270 HTTP Essentials

The more sophisticated network management applications
do much more than simply query device status. They can
correlate the status of several devices and even diagnose the
root cause of network problems. Sophisticated management
frameworks also integrate with other applications such as
customer support, trouble ticketing, and inventory control.
The larger the overall enterprise (and the more sophisticated
its information technology infrastructure), the more likely it
will find the capabilities of sophisticated management appli-
cations appealing.

Unfortunately, although snmp support is common in net-
work devices and appliances, it is less popular in high-level
software. Database management systems, application servers,
and Web server software, for example, may not provide a way
for snmp-based management software to query their status.
Quality products in all of those categories will provide some
method of management; however, that method may not be
snmp. Management via Web browsers, for example, is a
popular alternative. Unfortunately, it’s also usually proprie-
tary and, consequently, does not permit an integrated, unified
view of the entire Web site.

The bottom line, as always, is to understand your own needs.
If interoperability with a network management framework is
critical to your site, be sure the commercial software that you
deploy in your site supports snmp management. If, on the
other hand, unified network management is less important,
multiple management views may be acceptable.

B.4.3 Intrusion Detection

In the same way that bullet-proof Web sites need network
management systems to monitor the status of network sys-
tems, such Web sites must also monitor their security. Secu-
rity monitoring is the task of intrusion detection systems. An
intrusion detection system, or ids, continuously looks for
unauthorized access, network attacks, and other types of ma-
licious actions. When it detects suspicious activity, the ids

Building Bullet-Proof Web Sites 271

can alert administrators and, in some cases, actively defend
against the attack.

There are two different types of intrusion detection: host-
based and network-based. Some commercial products com-
bine both approaches, but most systems generally adopt one
strategy over the other. Host-based systems add special soft-
ware agents to the systems being protected—Web servers,
dns servers, application servers, database management sys-
tems, etc. These agents carefully monitor various compo-
nents of the local system, including, for example, the
Windows event log, the unix /etc/passwd file, and other
components critical to system security. If the agent detects
suspicious activity, it reports its suspicions to a central man-
agement station. As figure b.21 shows, the management sta-
tion correlates reports from all the ids agents and presents a
comprehensive view to the network administrator. The man-
agement station can also take action to alert the administra-
tor should the activity warrant it.

Internet

Monitoring
Agent

Host
System
with
Monitoring
Agent

Host
System

with
Monitoring

Agent

Host
System
with
Monitoring
Agent

Intrusion Detection
Management Station

� Figure B.21
Intrusion detection systems may
use special software agents
installed on host systems to watch
the activity on those systems and
report anything suspicious.

272 HTTP Essentials

Network-based intrusion detection relies on a similar archi-
tecture; distributed monitoring systems report to a central-
ized management station. Instead of software agents
monitoring events, however, a network-based ids relies on
special-purpose network hardware. These hardware devices,
illustrated in figure b.22, are placed on the network where
they can monitor all network traffic.

The two approaches, as you might expect, have their own
strengths and weaknesses. Host-based agents have a much
more comprehensive view of an intruder’s actions, but they
themselves may be vulnerable to attack. If an attacker can
successfully gain access to a host system, that attacker may be
able to disable or defeat the monitoring agent. Network-
based agents are generally impervious to attacks themselves,
but they can only infer what is happening on a host system
because they have access only to the network traffic going to
or coming from the system. Clever attackers may disguise
their actions so as to slip by a network-based monitor, while

Internet

Intrusion Detection
Management Station

Probe

Figure B.22 �
Intrusion detection systems may also

rely on special network probes to
watch for suspicious activity. The

probes monitor network traffic
directly, independently of the site’s

host systems.

Building Bullet-Proof Web Sites 273

a host-based monitor, even if it cannot discern the actions,
may be able to see the effects.

Both host-based and network-based intrusion detection sys-
tems usually employ one of two strategies to detect malicious
behavior. The first strategy is often called profiling. With
profiling, the ids passively monitors the network for a short
period of time to learn. Passive monitoring teaches the ids
the normal activities that take place on the network. The ids
then becomes active, and, in this stage, simply looks for ac-
tivity that is markedly different from normal. The second
intrusion detection strategy relies on signatures. An ids using
signatures has a predefined set of activities that represent
attacks, and the ids continuously looks for those activities.
Neither profiling nor signatures are perfect, and both ap-
proaches often generate a significant number of false posi-
tives, indications of a problem when, in fact, none exists. A
department reorganization, for example, may change the
profile of network traffic significantly enough to trigger a
profiling ids. And otherwise harmless activities such as di-
agnosing a network failure may trigger a signature-based ids.
Nevertheless, as long as the frequency of false alerts is not
great enough to cause the administrator to ignore the system,
intrusion detection is a valuable tool in protecting the secu-
rity of Web sites.

B.4.4 Maintenance and Upgrade Procedures

A reality of the Web is that things change. Rapidly. Just as
you put the finishing touches on an optimum high-
availability site architecture, the site will require revisions,
maintenance, or upgrades. Unfortunately, it is during such
changes that Web sites are most vulnerable. Carefully man-
aging changes to an operating Web site is critical to keeping
the site up.

Fortunately, some of the same technology that enhances a
site’s availability also permits non-disruptive maintenance
and upgrades. Most hardware clustering products, for

274 HTTP Essentials

example, allow administrators to transparently take one of
the physical systems offline, upgrade it, and then bring it
back into the cluster, all without disturbing the operation of
the rest of the cluster.

The most critical factor for site maintenance, however, is not
technology. Rather, it is people and processes. Web sites that
expect to achieve high availability must have strong processes
and thoroughly documented procedures that govern all as-
pects of site operation. Some key areas include the following:

• Change and Configuration Management. High-availability
sites must keep track of all details of their configuration
and operation, including software releases, hardware
components, and network connectivity. All changes
made to the site—in any area—should be immediately
reversible should problems arise.

• Testing and Staging. Before any change is applied to a
live production site, it should be tested on a staging site
that mimics the production site as closely as possible.
Surprises are inevitable, and much better received when
they don’t affect real users. Because an ideal staging site
completely duplicates the production architecture, it may
be expensive to deploy. Staging sites often serve a dual
purpose, therefore, acting also as a complete standby site
for the production environment.

• Tracking and Logging. When it comes time to actually
implement a change or upgrade, it is important to log
every action involved in the change, no matter how triv-
ial. If a problem occurs, an unambiguous record is in-
valuable in restoring the site to operation.

B.5 The Big Picture

In this appendix we’ve looked at many of the elements that
make up bullet-proof Web sites. We’ve seen how to protect
the site’s Internet connection, its servers, database systems,

Building Bullet-Proof Web Sites 275

and applications. We’ve also looked at essential tools for op-
erating and maintaining the site, and we’ve considered the
importance of strict procedures for site upgrades. Now it’s
time to put all these elements together.

Figure b.23 illustrates one possible architecture for a high-
availability, scaleable, and secure Web site. The figure com-
bines many of the elements discussed in this appendix, and it

Load Balancer
and Firewall

Web
Server /

Application
Server

Web
Server /
Application
Server

Load Balancer
and Firewall

Web Browser

Backup ISPPrimary ISP

Internet

Standby Logs

Site Probe

Site Probe

Web Browser

Router Router

Firewall Firewall

Database
Management

System

Disk
Array

Cluster

Backup
Database

Network
Management

System

Intrusion
Detection

System

IDS Probe

 � Figure B.23
Bullet-proof Web sites combine many
technologies.

276 HTTP Essentials

introduces a few additional details. Although no vendors are
named, the architecture contains only systems that are com-
mercially available today. This architecture is not just theo-
retical; it can be used to create real Web sites today.

Of course, the architecture in the figure is only one of many
possibilities, as we’ve tried to show throughout this article.
Every Web site has unique requirements, and it is up to the
site architect to match those requirements with an appropri-
ate implementation.

B.5.1 Internet Connection

The example Web site is interactive and dynamic, and its
data must be kept consistent. Multiple Internet connections
to dispersed sites, therefore, are not feasible. Keeping such
sites synchronized would require prohibitively expensive
interconnections between them, and it would degrade
performance unacceptably. To protect against Internet
connection failures, therefore, the site includes links to
multiple Internet service providers. The site also maintains
its own provider-independent ip addresses, and the site’s
routers use bgp to advertise those addresses to the rest of the
Internet.

B.5.2 Web Systems

To protect the site’s Web systems, the architecture uses local
balancers (in a redundant configuration) to distribute traffic
between two separate systems. As the figure illustrates, these
load balancers also serve as screening firewalls.

B.5.3 Applications

The site takes advantage of Web application servers to actu-
ally run the site. These application servers run on the same
physical systems as the Web servers, and they use proprietary
technology to provide session-level failover.

Building Bullet-Proof Web Sites 277

B.5.4 Database Management System

The site’s database management system runs on a hardware
cluster and is supported by a Redundant Array of Inexpen-
sive Disks (raid) system. By relying on hardware clusters
rather than database software, the site lets other software in
addition to the dbms take advantage of the cluster’s high-
availability features.

Notice also that the dbms and the application servers are
separated by a second set of redundant firewalls. The two
sets of firewalls define the demilitarized zone (dmz) com-
mon in Web site architectures.

The site also uses standby logs to back up the database to a
second site. The backup database protects the site’s data, but
because the backup site does not include a full Web system,
the standby process does not add significantly to the site’s
availability.

B.5.5 Network Management and Monitoring

The site uses a combination of external monitoring and in-
ternal network management to ensure that it continues to
operate. A Web site monitoring service provides the external
monitoring, while the site uses its own network management
system, based primarily on snmp, for internal management.

B.5.6 Intrusion Detection System

In addition to a traditional network management applica-
tion, the site operates an intrusion detection system. The ids
system combines host-based monitoring agents and net-
work-based probes, all reporting to a central ids manage-
ment station.

279

REFERENCES

The following sources have more detailed information on many topics in this
text. Individual references, with commentary, are grouped by general information,
base http specifications, other security protocols, caching protocols, and infor-
mation on http versions.

General References

Although many books have been written about the architecture of the Internet,
the closest things to official standards are two documents published by the Inter-
net Engineering Task Force (ietf). ietf documents may be found from the or-
ganization’s Web site at http://www.ietf.org.

Robert Braden, ed. Requirements for Internet Hosts — Communication Layers
[rfc 1122]. The Internet Engineering Task Force. October 1989.

Robert Braden, ed. Requirements for Internet Hosts — Application and Support
[rfc 1123]. The Internet Engineering Task Force. October 1989.

There is also an ietf document that defines uniform resource identifiers.

Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform Resource
Identifiers (uri): Generic Syntax [rfc 2396]. The Internet Engineering
Task Force. August 1998.

http://www.ietf.org

280 HTTP Essentials

HTTP Specifications

The specifications for http and contained in a series of documents from the
ietf.

Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen,
Larry Masinter, Paul J. Leach, and Tim Berners-Lee. Hypertext Transfer
Protocol — http/1.1 [rfc 2616]. The Internet Engineering Task Force.
June 1999.

John Franks, Phillip M. Hallam-Baker, Jeffery L. Hostetler, Scott D. Law-
rence, Paul J. Leach, Ari Luotonen, and Lawrence C. Stewart. http Au-
thentication: Basic and Digest Access Authentication [rfc 2617]. The
Internet Engineering Task Force. June 1999.

David M. Kristol and Lou Montulli. http State Management Mechanism
[rfc 2965]. The Internet Engineering Task Force. October 2000.

Keith Moore and Ned Freed. Use of http State Management [rfc 2964]. The
Internet Engineering Task Force. October 2000.

Jeffrey C. Mogul and Paul J. Leach. Simple Hit-Metering and Usage-Limiting
for http [rfc 2227]. The Internet Engineering Task Force. October 1997.

Separate Security Protocols

The official specification for the Secure Sockets Layer protocol (version 3.0) is
available in several formats at http://www.netscape.com/eng/ssl3/.

Alan O. Freier, Philip Karlton, and Paul C. Kocher. The ssl Protocol Version
3.0. Netscape Communications Corporation. 4 March 1996.

Please note that some of the formats include errata to the original specification.
The errata itself are also available from the same site.

ssl 3.0 Errata. 26 August 1996.

The Transport Layer Security specification is a proposed standard of the ietf.

T. Dierks and C. Allen. The tls Protocol Version 1.0 [rfc 2246]. The Internet
Engineering Task Force. January 1999.

The Secure http specification is also an ietf document, although it is desig-
nated experimental.

http://www.netscape.com/eng/ssl3/

References 281

Eric Rescorla and Allan M. Schiffman. The Secure HyperText Transfer Protocol
[rfc 2660]. The Internet Engineering Task Force. August 1999.

Caching Protocols

Some of the caching protocols mentioned in chapter 5 are specified in ietf
documents.

Duane Wessels and K. Claffy. Internet Cache Protocol (icp), version 2 [rfc
2186]. The Internet Engineering Task Force. September 1997.

Duane Wessels and K. Claffy. Application of Internet Cache Protocol (icp), ver-
sion 2 [rfc 2187]. The Internet Engineering Task Force. September 1997.

Paul Vixie and Duane Wessels. Hyper Text Caching Protocol (htcp/0.0) [rfc
2756]. The Internet Engineering Task Force. January 2000.

Other protocols and technologies were developed by individual vendors. Some
documentation is available from the vendors’ Web sites.

Cache Array Routing Protocol (carp) v1.0 Specifications. Microsoft Corpora-
tion. Available at http://www.microsoft.com/Proxy/Guide/carpspec.asp

“Chapter 11, Using the Client Autoconfiguration File” from Netscape Proxy
Server Administrator's Guide. Netscape Communications Corporation. At
http://developer.netscape.com/docs/manuals/proxy/adminux/autoconf.htm

Web Cache Communication Protocol. Cisco Systems. Available at
http://www.cisco.com/warp/public/732/wccp/index.html

Most of the other protocols discussed in chapter 5 are documented only in ven-
dors’ documents and Internet drafts that are not publicly available at the present
time.

Previous HTTP Versions

The specification of http version 1.0 is an ietf document, as is the explanation
of http version numbers.

Tim Berners-Lee, Roy T. Fielding, and Henrik Frystyk Nielsen. Hypertext
Transfer Protocol — http/1.0 [rfc 1945]. The Internet Engineering Task
Force. May 1996.

http://www.microsoft.com/Proxy/Guide/carpspec.asp
http://developer.netscape.com/docs/manuals/proxy/adminux/autoconf.htm
http://www.cisco.com/warp/public/732/wccp/index.html

282 HTTP Essentials

Jeffrey C. Mogul, Roy T. Fielding, Jim Gettys, and Henrik Frystyk Nielsen.
Use and Interpretation of http Version Numbers [rfc 2145]. The Internet
Engineering Task Force. May 1997.

The original definition for http is still available on the Web site of the World
Wide Web Consortium.

Tim Berners-Lee. The Original http as defined in 1991. Available at
http://www.w3.org/Protocols/http/AsImplemented.html

Both the World Wide Web Consortium and other research organizations have
documented http compliance on the Internet.

http/1.1 Feature List Report Summary. World Wide Web Consortium.
Available at http://www.w3.org/Protocols/http/Forum/Reports/

Balachander Krishnamurthy and Martin Arlitt. pro-cow: Protocol
Compliance on the Web. 1999. [Published as at&t Labs—Research
Technical Memorandum #990803-05-tm and as hp Labs Technical
Report hpl-1999-99.]

http://www.w3.org/Protocols/http/AsImplemented.html
http://www.w3.org/Protocols/http/Forum/Reports/

283

GLOSSARY

Accept An http request header by which a client indicates the type of content
it can accept.

Accept-Charset An http request header by which a client indicates the char-
acter sets that it can accept.

Accept-Encoding An http request header by which a client indicates the
character encodings that it can accept.

Accept-Language An http request header by which a client indicates the
languages that it can accept.

Accept-Ranges An http response header by which a server indicates that it
can accept future requests for partial ranges of the object.

ACK A tcp flag that the sender uses to acknowledge a previous tcp segment.

Address A value that uniquely identifies a system on a network. An ip address
uniquely identifies a system on the Internet.

Age An http response header by which a server estimates the age, in seconds,
of the object.

Algorithm A parameter in the http Authorization and www-Authenticate
headers by which the sender indicates a particular digest algorithm.

Allow An http entity header that indicates the particular http methods that
the object supports.

284 HTTP Essentials

Application A communications service that relies on underlying communica-
tions protocols; Web browsing using http is an application.

Application Server A special system that coordinates Web access to a variety
of other systems, including database management systems and main-
frame services. Application servers can play a key role in the reliability of
Web site architectures.

Asymmetric Cryptography A type of cryptography which uses two different
keys—one to encrypt messages and another to decrypt messages. The
keys are constructed so that knowledge of the encryption key does not
reveal the decryption key. Asymmetric cryptography is also called public
key cryptography because the encryption key can be made public without
compromising the security of the system.

Authentication A security function which verifies the identity of a communi-
cating party.

Authentication-Info An http response header by which the server provides
additional information about an authentication exchange.

Authorization An http request header by which a client authenticates its
identity.

Availability The degree to which a system such as a Web site can be accessed
by its users.

Bandwidth A measurement of network capacity.

Base64 An encoding method that expresses arbitrary binary data strictly in
characters from the ascii character set.

Border Gateway Protocol (BGP) A routing protocol used by networks on the
Internet to exchange topology information that determines how ip data-
grams reach their destinations.

Browser A user application that is an http client; common examples include
Microsoft’s Internet Explorer and aol’s Netscape Navigator.

bytes A parameter of the http Accept-Ranges header that indicates the server
can accept future range requests that specify bytes.

Cache A system that remembers retrieved information so that it can return
that information in response to subsequent requests.

Glossary 285

Cache Array Routing Protocol (CARP) A set of rules that cooperating cache
servers can use to distribute cached objects among themselves without
overlap.

Cache-Control An http general header that directs the behavior of interme-
diate caches through which the message passes.

Certificate In general, data that both includes and validates a public key. Also,
an ssl message that carries a certificate.

Certificate Authority An organization that issues public key certificates and
vouchsafes for the authenticity of the party that possesses the public and
private key pairs.

Certificate Request An ssl message that the server uses to ask a client to pro-
duce its public key certificate and proof that it possesses the correspond-
ing private key.

Certificate Verify An ssl message that a client uses to prove that it possesses
the private key corresponding to a public key (carried in Certificate
message).

Certificate-Info An http header used with Secure http to identify a public
key certificate.

Change Cipher Spec An ssl message that activates the most recently negoti-
ated set of security services and parameters.

Character Set A specific mapping of characters to a binary representation;
ascii is a common character set.

Chunked A special http transfer encoding that breaks a large object into
smaller pieces and transfers the smaller pieces individually.

Cipher Suite A combination of cryptographic algorithms, parameters, and key
sizes.

Client The party in a communication that initiates the exchange.

Client error A http status code (in the range 400-499) that indicates an error
in the client’s request.

Client Hello An ssl message that the client uses to introduce itself and pro-
pose a set of cryptographic parameters for a session.

286 HTTP Essentials

Client Key Exchange An ssl message that the client uses to transfer an en-
crypted session key that both parties will use to encrypt the remainder of
the session.

close A parameter in the http Connection header that tells the recipient that
the sender will close the connection after the current request.

Clustering A technique that combines multiple physical systems and allows
them to act cooperatively as a single logical system. Clustering can im-
prove both performance and availability.

cnonce A parameter of the http Authentication-Info and Authorization
headers that carries a random value selected by the client. Random values
strengthen security because it is difficult for adversaries to guess or pre-
dict their values.

Comment An attribute of an http cookie that provides a brief explanation of
the use of the cookie.

CommentURL An attribute of an http cookie that provides a url for a de-
tailed explanation of the use of the cookie.

Communication Protocol Rules that communicating parties follow in a
communication exchange. Protocols specify both syntax (the format of
exchanged messages) and semantics (how the systems respond to
messages).

compress An http encoding format based on the unix “compress” data com-
pression program.

CONNECT An http method by which a client requests a tunnel to a distant
server.

Connection An http general header that lists other headers in the message
that should not be forwarded by an intermediate system. Also, the logical
association that tcp establishes between two communicating parties.

Content Entities carried in the message body of http messages.

Content-Encoding An http entity header that identifies the encoding of the
object.

Content-Language An http entity header that identifies the human lan-
guage used by the object.

Glossary 287

Content-Length An http entity header that identifies the size, in bytes, of
the object.

Content-Location An http entity header that identifies the location of the
object.

Content-MD5 An http entity header that carries a message digest of the
object.

Content-Privacy-Domain A Secure http header that indicates the format of
cryptographic parameters used for the session.

Content-Range An http entity header that identifies the partial range of the
object carried in the current message body.

Content-Type An http entity header that identifies the type of the object.
Also, a Secure http header that identifies the type of information se-
cured by the message.

Cookie An http request header by which a client returns state management
information to a server; the information would have been provided by the
server in response to a previous request, and it allows the server to associ-
ate different requests with each other. More generally, a cookie is the
state management information.

Cookie2 An http request header that a client uses to indicate that it can ac-
cept http version 1.1. Set-Cookie2 headers in responses.

count A parameter to the http Meter header by which intermediate servers
indicate the number of times an object has been viewed.

Credentials Information that provides and verifies an identity; examples of
credentials include usernames and passwords and public key certificates
(along with proof of the corresponding private key).

Database Management System (DBMS) A software system that stores and
organizes data for easy retrieval.

Datagram The basic unit of information transmitted across the Internet and
other ip-based networks.

Date An http general header that carries the date and time that the message
was created.

288 HTTP Essentials

deflate The http encoding format that uses the zlib format defined by rfc
1950.

DELETE An http method by which a client requests that a server remove an
object.

Digest Authentication An authentication technique in which the sender
combines data with a secret password and calculates a cryptographic
message digest. The recipient verifies the sender’s possession of the pass-
word by repeating the calculation and checking for the same result. Note
that both sender and recipient must know the password.

Discard An attribute of an http cookie that asks the client to delete a cookie.

Disk Mirroring A technology that uses multiple physical disk drives to keep
copies of data. Should one disk drive fail, the data may be recovered from
other disk drives.

Domain A parameter of the http www-Authenticate header that indicates or
hints to the client which username and password to provide. Also, an at-
tribute of an http cookie that defines the domain of servers to which the
cookie applies.

Domain Name System (DNS) The system and protocols used on the Internet
to map names, such as www.waterscreek.com, to ip addresses, such as
207.155.248.9.

dont-report An attribute of the http meter header by which a server indi-
cates that it does not want to receive page view counts for the object.

do-report An attribute of the http meter header by which a server indicates
that it wants to receive page view counts for the object.

Encoding How an object is formatted, either for storage (content encoding) or
transfer (transfer encoding).

Encryption-Identity An http header used by Secure http to identify the
party for whom a message should be encrypted.

Entity An object transferred by http.

Entity Tag An arbitrary value that servers assign to an http entity that
uniquely identifies that entity.

Glossary 289

ETag An http response header that carries the object’s entity tag value.

Expect An http request header by which a client indicates a behavior that it
expects of the server.

Expires An http entity header that identifies the time and date after which an
object should no longer be considered valid.

File The component of a uniform resource identifier that specifies the object
itself; often it is a file name.

FIN A tcp flag that indicates the party is closing the tcp connection.

Finished An ssl message that concludes cryptographic negotiations.

Firewall A special purpose system that monitors all information passing be-
tween a site and the Internet looking for security problems.

Fragment The component of a uniform resource identifier that indicates a
specific region within an object.

Frame The smallest unit of information transferred by some network
technologies.

From An http request header that identifies the human user (typically an
email address) making the request.

Gateway A system that translates between different protocols.

GET An http method that clients use to request objects.

Global Load Balancing A technique that distributes multiple physical Web
servers in multiple locations on the Internet and directs clients to the
closest server.

gzip An http encoding method that uses the format of the gnu gzip program.

HEAD An http method with which a client asks a server to return the headers
associated with an object without returning the object itself.

Header Parameters of an http message other than the object being
transferred.

Host An http request header that identifies the host for the object being re-
quested. Also the component of a uniform resource identifier that indi-
cates that host.

290 HTTP Essentials

Hyper Text Caching Protocol (HTCP) A communication protocol that cache
servers can use to coordinate their operation.

Hypertext A document that contains active links to other documents.

Hypertext Markup Language (HTML) A language for hypertext documents.

Hypertext Transfer Protocol (HTTP) A communications protocol for trans-
ferring hypertext documents and other objects.

identity An http encoding method in which the object is unchanged.

If-Match An http request header by which a client asks the server to carry out
its request only if certain conditions (known as preconditions) are true.

If-Modified-Since An http request header by which a client asks the server to
carry out its request only if the object has been modified since the date
and time specified in the header.

If-None-Match An http request header by which a client asks the server to
carry out its request only if certain conditions are not true.

If-Range An http request header by which a client asks the server to return
the requested range of an object only if the precondition is true; other-
wise, the server should return the entire object.

If-Unmodified-Since An http request header by which a client asks the
server to carry out its request only it the object has not been modified
since the specified time and date.

Informational An http status code (in the range 100-199) that provides in-
formation without indicating the final status of the request.

Integrity Protection A security service that allows recipients to detect if data
has been modified in transit.

Intermediate Server A system that places itself between the client and server,
accepting the client’s requests and forwarding them to the server.

International Standards Organization (ISO) An organization that develops
standards for many areas, including communication protocols.

Internet The worldwide, interconnected collection of networks based on the
Internet Protocol.

Glossary 291

Internet Assigned Numbers Authority (IANA) The organization that assigns
ip addresses and protocol parameters. Eventually, the Internet Corpora-
tion for Assigned Names and Numbers will assume this responsibility.

Internet Cache Protocol (ICP) A communication protocol that cache servers
can use to coordinate their operation.

Internet Content Adaptation Protocol (ICAP) A communication protocol
that can let intermediate servers adjust content, for example, to adapt it
for handheld display screens.

Internet Corporation for Assigned Names and Numbers (ICANN) The
organization that assigns authority for registering and administering do-
main names on the Internet. Eventually, icann will also assume respon-
sibility for assigning ip addresses and protocol parameters.

Internet Protocol (IP) The communication protocol that is responsible for
delivering datagrams to their destination on the Internet.

Internet Service Provider (ISP) A communications service provider that of-
fers connectivity to the Internet.

Intrusion Detection System (IDS) A system that monitors networks and
computer systems looking for activity that indicates a possible security
breach.

IP Address A binary value that uniquely identifies a system on the Internet,
usually written as, for example, 172.16.1.18.

ISO 639 An international standard that specifies two-letter abbreviations for
human languages; for example, iso 639 designates “en” to represent
English.

ISO 8859-4 An international standard character set that corresponds to the
earlier ascii standard.

JavaScript A programming language often used within Web pages.

Keep-Alive A non-standard http header, primarily used with http version
1.0, that indicates a desire to keep the connection active after the current
request.

Key-Assign An http header used by Secure http to assign a convenient iden-
tifier to a cryptographic key.

292 HTTP Essentials

Last-Modified An http entity header that indicates the time and date the
object was last modified.

Layer A particular set of communication services, typically provided by a single
communications protocol. Multiple protocols, operating at distinct layers,
provide a complete communications service.

Linefeed The ascii character represented by the binary value 0001010 and
used in most unix systems to indicate the end of a line of text; http uses
the combination of a linefeed character and a return character to mark
the end of its lines.

LINK An http 1.0 method (and associated header) that clients could use to add
a link to an object.

Load Balancing The technique of using multiple physical systems to act as a
single logical server and distributing request among the physical systems
so that no one system is overloaded. When the physical systems are all on
the same local network, the technique is known as local load balancing;
when the systems are distributed across the Internet, the technique is
known as global load balancing.

Local Load Balancing Load balancing when the systems sharing the load are
all located on the same local network.

Location An http response header that identifies the location of the object.

MAC-Info A Secure http header that carries a message authentication code
(also known as a message digest).

max-age An http Cache-Control directive that specifies the maximum
amount of time an object may remain valid in a cache. Also, an http
cookie attribute that specifies the maximum lifetime of the cookie.

Max-Forwards An http request header that specifies the maximum number
of intermediate servers through which the request may pass.

max-reuses An http Meter directive that limits the number of times an ob-
ject may be returned to the same user from a cache.

max-stale An http Cache-Control directive that specifies the maximum time
after a cached object becomes invalid that a cache can still return it in re-
sponse to clients that indicate they will accept stale objects.

Glossary 293

max-uses An http Meter directive that limits the number of times an object
may be returned to different users from a cache.

Message Body The part of an http message that carries the object being
transferred.

Message Digest A cryptographic algorithm that calculates a small binary
value for a large object; it has the property that if the original object
changes at all, the digest calculation result will change as well. Such algo-
rithms are also known as secure hash algorithms.

Message Digest 5 (MD5) A particular message digest algorithm.

Meter An http header that controls whether an object may be stored in a
cache and, if so, gives cache servers a way to report accesses of the object
to the origin server.

Method The type of an http request.

min-fresh An http Cache-Control directive that specifies the minimum age
that must be remaining on an object for a cache server to return it.

Mirrored Site A Web site with more than one server where each server con-
tains an identical copy of the site’s contents.

Mozilla The informal name for the Netscape Navigator Web browser, so called
because Netscape built upon, and intended to surpass, the then-
dominant Mosaic browser.

Multi-homing The practice of providing a system or a Web site multiple net-
work connections to the Internet.

must-revalidate An http Cache-Control directive that indicates an object
should not be returned from an intermediate cache unless that cache
server first validates its copy with the origin server.

Mutual Authentication A security service whereby both communicating par-
ties verify each other’s identity.

Name An http Cookie attribute that assigns a name to the cookie.

nc Short for nonce count, a parameter of both Authentication-Info and Au-
thorization headers that indicates the number of times a particular nonce
value has been used.

294 HTTP Essentials

Network Element Control Protocol (NECP) A communications protocol by
which servers such as cache servers can control the operation of routers,
switches, and other network elements.

Network Management The process of provisioning, configuring, and moni-
toring systems within a network infrastructure.

nextnonce An http Authentication-Info parameter that servers use to pro-
vide a new nonce value to clients.

no-cache An http Cache-Control directive that indicates an object should
not be stored in a cache.

nonce A parameter in http Authorization and www-Authenticate headers
that carries a random value; used to strengthen the security of the au-
thentication exchange. Also, an http header used with Secure http.

Nonce Count (nc) Used in its abbreviated form (nc), a parameter of both Au-
thentication-Info and Authorization headers that indicates the number
of times a particular nonce value has been used.

Nonce-Echo An http header used by Secure http to return a nonce value.

no-store An http Cache-Control directive that identifies sensitive informa-
tion (such as a password) that should not be stored with an object in a
cache.

no-transform An http Cache-Control directive that indicates an object
should not be transformed (e.g. compressed to save space) by a cache
server.

only-if-cached An http Cache-Control directive that asks an intermediate
server to respond to a request only with a cached copy.

opaque A parameter that carries an arbitrary value provided by a server in an
www-Authenticate header (and returned by the client in the subsequent
Authorization header) that the server uses internally to facilitate process-
ing the request.

OPTIONS An http method by which a client asks a server the options its sup-
ports, either in general or in conjunction with a specific resource.

Origin Server The ultimate source of an http resource.

Glossary 295

Packet The smallest unit of information transferred by some network
technologies.

Page View The retrieval of an object by a client.

Parallel Servers A database technology that operates multiple physical sys-
tems as if they were a single logical system.

Password The component of a uniform resource identifier corresponding to
the user’s password.

Path An attribute of an http cookie that defines the areas within the site to
which the cookie applies. Also, the component of a uniform resource
identifier that defines a region within a site.

Peer The system with which one system is communicating.

Persistence A technique that keeps the tcp connection open after an initial
http exchange so that the connection may be reused for subsequent
exchanges.

Pipelining A technique by which a client sends one http request immediately
after another, without waiting for a response to the earlier request.

Port The tcp address of a particular application within a system. The ip ad-
dress identifies the system, while the port number distinguishes multiple
applications within that system. http cookies include a port attribute,
and uniform resource identifiers may include a port component.

POST An http method that clients use to provide data to a resource on the
server, most commonly used to submit forms.

Pragma An http general header that provides additional information about a
message.

Prearranged-Key-Info A Secure http header that identifies keys previously
established by the communicating parties.

Precondition A condition that the client wishes the server to confirm before
carrying out a request. Preconditions are specified in If-Match and simi-
lar headers.

Private Key One key of a pair used in asymmetric cryptography. The private
key is never shared with other parties.

296 HTTP Essentials

private An http Cache-Control directive that indicates that a particular ob-
ject is private and should only be returned by cache servers to the same
user.

Profiling A technique used by intrusion detection systems by which they re-
cord a site’s normal network and system activity and trigger on any sig-
nificant deviations from that normal behavior.

Protocol Rules that communicating parties follow in a communication ex-
change. Protocols specify both syntax (the format of exchanged mes-
sages) and semantics (how the systems respond to messages). Also the
component of a uniform resource identifier that indicates the particular
protocol to use to access an object.

Proxy Auto Configuration (PAC) A script that configures http clients with
information about which proxies to use and when and how to use them.

Proxy An intermediate server that receives client requests and forwards them
to the actual server.

Proxy Cache A proxy server that also functions as a cache.

Proxy-Authenticate An http header that a proxy server uses to request au-
thentication of a client.

Proxy-Authorization An http header that clients use to authenticate them-
selves to a proxy server.

proxy-revalidate An http Cache-Control directive that tells proxy servers
not to return a cached copy of the object without validating that copy
with the origin server.

public An http Cache-Control directive that tells cache servers that the ob-
ject may be returned to other clients, not just the original requestor.

Public Key One of a pair of keys used in asymmetric cryptography. The public
key may be freely shared with other parties without compromising
security.

Public Key Certificate A collection of data that both includes and validates a
public key.

Public Key Cryptography A type of cryptography which uses two different
keys—one to encrypt messages and another to decrypt the messages. The

Glossary 297

keys are constructed so that knowledge of the encryption key does not
reveal the decryption key. Also known as asymmetric cryptography.

PUT An http method that clients use to send objects to servers.

q A parameter known as quality factor that may be included in Accept, Accept-
Charset, Accept-Encoding, Accept-Language, and te headers. The qual-
ity factor allows client to express a relative preference for different op-
tions of each of these headers.

qop A parameter of Authentication-Info, Authorization, and www-
Authenticate headers that indicates the type of security services re-
quested or used for an exchange.

Quality Factor (q) Used in its abbreviated form (q), a parameter in Accept,
Accept-Charset, Accept-Encoding, Accept-Language, and te headers.
The quality factor allows client to express a relative preference for differ-
ent options of each of these headers.

Quality of Protection (qop) Used in its abbreviated form (qop), a parameter
of Authentication-Info, Authorization, and www-Authenticate headers
that indicates the type of security services requested or used for an ex-
change.

Query A component of a uniform resource identifier that provides additional
parameters to the file. The query component is most commonly used
with Web forms to convey simple user input, normally with a get
method instead of a post.

Range An http request header that a client uses to request part of a resource
rather than the entire object.

realm A parameter in Authorization and www-Authenticate headers that
specifies a particular application or service for which the user is being
authorized.

Reason-Phrase A text description of an http status that appears in a Status-
Line.

Redirection The process by which a server tells a client to reissue its request
but for a different uniform resource identifier. Redirection status codes
are in the range 300-399.

298 HTTP Essentials

Referer An http request header in which the client indicates the source of a
request; often this header contains the uniform resource identifier of the
Web page that contains the link the user followed.

Reliability The property of a system that measures the degree to which the
system operates properly.

Repeat Client Security A security service introduced in http version 1.1 that
allows the client and server to renegotiate keys. Key renegotiation pro-
vides additional security for clients that frequent the same server.

Replay Protection A security service that prevents adversaries from recording
valid messages and later replaying those messages and successfully mas-
querading as an authorized client.

Replication A database technology that maintains multiple synchronized cop-
ies of databases on different physical systems.

Request The message that initiates a client/server interaction. Clients send
requests to servers, and servers reply with responses.

Request for Comments (RFC) A specification or other document produced by
the Internet Engineering Task Force; the http version 1. 1 specification is
rfc number 2616.

Request-Line The first line of a client’s http message, consisting of an http
method, a uniform resource identifier (the Request-uri), and an http
version.

Request-URI The part of an http Request-Line that specified the uniform
resource identifier for the request.

Response The server’s answer to a client’s request. Also, a parameter of the
http Authorization header that carries the result of a client’s message
digest calculation.

Retry-After An http response header that gives the client a time after which
it should retry its request.

Return The ascii character represented by the binary value 0001101 and used
in Macintosh systems to indicate the end of a line of text; http uses the
combination of a linefeed character and a return character to mark the
end of its lines.

Glossary 299

Reverse Proxy Cache A proxy cache server deployed by or operated for Web
servers rather than Web clients.

rspauth A parameter of the Authentication-Info header that carries the result
of a server’s message digest calculation.

RST A tcp flag that indicates a connection should be reset.

Scaleability The quality of a system or design that permits it to easily and
gracefully accommodate significant increases in load.

Secure An attribute of an http cookie that tells the client to return the cookie
only on subsequent requests that are secure from eavesdropping.

Secure Hash A cryptographic algorithm that calculates a small binary value for
a large object; it has the property that if the original object changes at all,
the secure hash calculation result will change as well. Such algorithms are
also known as message digest algorithms.

Secure HTTP (SHTTP) A communications protocol based on http, as well as
several enhancements to http itself, that provides for secure
communications. shttp is classified as an experimental protocol and is
rarely used today.

Secure Sockets Layer (SSL) A communications protocol developed initially by
Netscape Communications that provides a secure communications chan-
nel for various applications. ssl is commonly used to secure Web com-
munications today. The Transport Layer Security protocol is a newer
version of ssl.

Security Protecting communications against various adversaries, including
those that masquerade, eavesdrop, or alter the message contents.

Segment A single tcp message.

Server The passive party in a client/server communications exchange. Clients
initiate the communication, and servers respond to clients’ requests. Also,
an http response header that allows a server to indicate its vendor, ver-
sion number, etc.

Server error An http response code in the range 500-599 that indicates an
error in the server.

300 HTTP Essentials

Server Hello An ssl message in which the server selects security parameters
for the session.

Server Hello Done An ssl message that servers send to indicate that they have
concluded their part of the initial ssl negotiation.

Session ID An arbitrary value that parties use to identify an ssl session. Both
parties can resume an earlier session by referencing its session id during
initial negotiations.

Set-Cookie2 An http response header that servers use to send cookies to
clients.

SHTTP-Certificate-Types An http header used by Secure http to identify
the format of public key certificates.

SHTTP-Cryptopts An http header used by Secure http to carry general
cryptographic options.

SHTTP-Key-Exchange-Algorithms An http header used by Secure http to
identify cryptographic algorithms used to exchange keys.

SHTTP-Message-Digest-Algorithms An http header used by Secure http
to identity cryptographic algorithms used to calculate the digest of a
message.

SHTTP-Privacy-Domain An http header used by Secure http to identify the
format of cryptographic information.

SHTTP-Privacy-Enhancements An http header used by Secure http to list
privacy enhancements desired or used for a message.

SHTTP-Signature-Algorithms An http header used by Secure http to
identify cryptographic algorithms used to digitally sign messages.

SHTTP-Symmetric-Content-Algorithms An http header used by Secure
http to identify cryptographic algorithms used to encrypt message
contents.

SHTTP-Symmetric-Header-Algorithms An http header used by Secure
http to identify cryptographic algorithms used to encrypt message
headers.

Glossary 301

Signatures A technique used by intrusion detection systems that detects at-
tacks by comparing network and system behavior against behavior that is
known to indicate attacks.

Simple Network Management Protocol (SNMP) A communications proto-
col that allows network administrators to remotely monitor, configure,
and manage networked systems.

Site The collection of systems that provide service to Web clients, including
http servers, load balancers, caches, firewalls, application servers, and
database management systems.

Site Monitoring A service that monitors the health and performance of a Web
site, usually by simulating the behavior of users.

s-maxage An http Cache-Control directive that limits the amount of time
an object may be kept in a cache if that object is accessed by multiple
clients.

SSL Acceleration A technique for improving Web site performance by using
special purpose hardware to perform ssl’s cryptographic calculations.
Such hardware is generally faster than software implementations.

stale A parameter of the www-Authenticate header by which the server indi-
cates that it has received a request based on parameters that have already
expired.

Standby Database A technique of database operation that records the actions
in the primary database and replays those actions, generally after some
delay, on a backup database.

State Management In http, the process of associating different client re-
quests with each other so as to form a coherent session; http state man-
agement relies on cookies.

Stateless The property of normal http communications where any request is
independent of all others.

Status Code A three-digit numeric value that indicates the result of an http
request.

Status-Code The part of an http Status-Line that carries the numeric status
code.

302 HTTP Essentials

Status-Line The first line of an http response; it consists of an http version,
a Status-Code, and a Reason-Phrase.

Strong A property of an entity tag that implies objects with the same entity tag
value are identical.

Subtype A minor classification of content types. For example, the content type
“text/xml” has a major classification (type) of “text” and a minor classifi-
cation (subtype) of “xml.”

Successful http status codes in the range 200-299 that indicate that the cli-
ent’s request succeeded.

Symmetric Cryptography A type of cryptography in which both parties pos-
sess identical keys.

SYN A tcp flag that indicates the start of a connection.

TCP Multiplexing A technique for improving Web site performance that uses
special purpose systems to manage multiple tcp connections to clients,
relaying requests and responses on a smaller number of connections to
the servers.

TE An http request header that tells the server which transfer encodings the
client can accept in a response.

Timeout An http meter directive that the origin server uses to specify the
maximum time between cache server reports.

Title An http 1.0 header that carries the title of a object.

TRACE An http method that allows a client to discover the intermediate sys-
tems between it and the origin server. A server responds to a trace re-
quest by returning the request itself (including any Via headers) in the
message body.

Trailer An http general header that indicates some additional headers follow
the message body.

Transfer-Encoding An http response header that identifies the encoding
format applied to the object for its transfer to the client.

Glossary 303

Transmission Control Protocol (TCP) A reliable transport-layer protocol used
on the Internet. tcp ensures that data is delivered without error and in
the correct order to the recipient system.

Transparent Cache A cache server that is generally invisible to clients and
servers alike. Transparent caches intercept http requests (or have routers
or other network elements intercept requests on their behalf) without the
knowledge of the client.

Transport Layer Security (TLS) The successor to the Secure Sockets Layer
protocol, defined by the Internet Engineering Task Force. Like ssl, tls
provides a secure communications channel for various applications.

Transport Protocol A communications protocol that operates at the transport
layer of a communications system. Transport protocols generally have the
responsibility for providing an appropriate level of reliability to the
communications.

Tunnel An intermediate server that adds some additional service (such a secu-
rity) to the communications between a client and origin server.

Type A major classification of content types. For example, the content type
“text/xml” has a major classification (type) of “text” and a minor classifi-
cation (subtype) of “xml.”

Unicode A character set that can represent not just Roman characters (as is the
case of ascii), but also characters from languages such as Chinese.

Uniform Resource Identifier (URI) A textual description of an object on the
Internet; most commonly a uniform resource locator (url). Also, when
used in its abbreviated form (uri), a parameter of the Authorization
header that repeats the uri of the request.

Uniform Resource Locator (URL) A uniform resource identifier that describes
an object by giving its location on the Internet, including the server stor-
ing the object, the application protocol needed to retrieve it, and the
name of the object on that server. Also, an http 1.0 header that carries
the url of an object.

UNLINK An http 1.0 method that clients could use to remove a link from an
object.

304 HTTP Essentials

Upgrade An http general header that asks the other party to upgrade the
communications to a different protocol.

User-Agent An http general header that identifies the client’s vendor, version
number, etc.

username A parameter of an http Authorization header that contains the
username for the request. Also, the component of a uniform resource
identifier that contains a username.

Vary An http response header that lists http headers other than the Request-
uri that determined the server’s response. Cache servers can use this in-
formation to determine if it is appropriate to return the same object on
subsequent requests.

Version An attribute of http cookies that identifies the version of http state
management that the parties are using; the current version is 1.

Virtual Host A single physical Web server acting as several different Web sites.
Internet service providers that offer Web hosting often share their sys-
tems among multiple customers in this manner.

Warning An http general header that carries additional information about a
message, usually intended to warn of potential cache problems.

Weak A property of an entity tag that implies objects with the same entity tag
value are equivalent, but not necessarily identical.

Web Short for the World Wide Web, the collection of http servers and appli-
cations accessible on the Internet.

Web Cache Communication Protocol (WCCP) A communications protocol
developed by Cisco Systems that allows cache servers to coordinate their
operation with access routers.

Web Proxy Auto Discovery (WPAD) A set of rules that clients may use to
automatically locate a proxy auto configuration script.

will-report-and-limit An http meter directive by which a proxy server indi-
cates it can support metering.

wont-ask An http meter directive by which an origin server indicates that it
will not ask for metering of an object.

Glossary 305

wont-limit An http meter directive by which a proxy server indicates that it
will support metering (namely, by reporting usage), but it will not limit
page views.

wont-report An http meter directive by which a proxy server indicates that it
will support metering (namely, by limiting page views), but it will not re-
port usage.

World Wide Web (WWW) The collection of http servers and applications
accessible on the Internet.

WWW-Authenticate An http response header that asks a client to reissue its
request with user authentication credentials.

Your-Key-Pattern An http header used by Secure http to identify a crypto-
graphic key.

307

INDEX

A

Acceleration techniques, 225–228

Accept-Charset header, 58–59

Accept-Encoding header, 59, 106

Accept header, 57–58

Accept-Language header, 59–60, 75

Accept-Ranges header, 60–61, 78

Access routers, 201, 202–203

ack (acknowledge) flags, 15

Advanced caching, 186–225

caching implementations in, 186–194

Adversaries, message interception by, 153

Age header, 61–64

algorithm parameter, 137, 139, 150, 154

Allow header, 65, 125

American Registry for Internet Numbers (arin), 248

Application layer protocols, 8

Application messages, 162–163

Application protocol, 5, 6

Application servers, 257–260

Architectures, mirrored, 250–251

Asia-Pacific Network Information Center, 248

Asterisk

entity tag value and, 90

If-Match header and, 87–88

as the value for the Vary header, 111

as a wildcard, 57

Authentication, 161. See also Web authentication

Network Element Control Protocol, 212

Authentication credentials, 204

Authentication-Info header, 65, 140, 148

Authentication-Info parameters, 141, 146

auth-int, 143, 154, 155

Authorization header, 65, 125, 132, 144, 145, 147, 153

Authorization parameters, 139–140

auth value, 143, 154

Availability, Web site, 241–242. See also High

availability

B

Backup server, switching to, 246

Banner ads, 40–41

Base64 encoding, 76, 132

Basic Authentication, 130–133

problems with, 133

308 HTTP Essentials

Berners-Lee, Tim, 2, 3, 229

Blank line, in an http request, 51

Border Gateway Protocol (bgp), 248

Border Gateway Protocol paths, 185

Browser-based user interface, 120–121

Browsers. See also Web browsers

configuring, 194–197

cookie acceptance by, 43

Buckets mechanism, 203

“Bullet-proof ” Web sites, 241–242, 275

Byte range, client request for, 60–61

bytes, 78

C

Cache Array Routing Protocol (carp), 222–225. See

also carp entries

Cache contents, coordination of, 222–225

Cache-Control: no-cache header, 102

Cache-Control directives, 66

Cache-Control header, 61, 64, 65–70

Cached objects

age of, 64

freshness calculations for, 63

Cached resources, age of, 61

Cache freshness calculations, parameters for, 63

Cache problems, 113–114

Caches

content modification for, 217

efficient use of, 88–90

Cache server networks, 193–194

Cache servers, 26, 33–35, 201, 202–203. See also Proxy

servers: Servers

communication among, 212–216

communication with network elements, 204, 205

HEAD operation and, 25

Hyper Text Caching Protocol and, 216–217

Caching. See also Advanced caching

controversies over, 191

proxy servers and, 32

redundant, 223

Caching implementations, 186–194

Caching performance, improving, 81–82

Caching protocols, 194

references for, 281

Cailliau, Robert, 2

carp configuration, global information in, 224

carp configuration file, server information in, 224

carp routing algorithm, 225

Censorware Project, 2

Certificate authorities, 161

Certificate requests, 165

Change and Configuration Management, 274

Character encodings, 58–59

Character sets, defined, 59

Chunked transfer encoding, 74, 107, 108, 109

Chunks, 109

Cipher suites, 169

Cisco Systems, 191, 200, 204

C-Language library, 81

Client authentication, using ssl, 166

Client calculation, 147–148

Client digest calculation, for integrity protection, 154–

155

Client error status codes, 124–127

Client redirection, 29–30

Clients, 13–19. See also Frequent clients

authentication of, 102, 114–115

cookie acceptance by, 43–44

cryptographic authentication of, 163, 165–168

redirecting to a new uri, 93–94

state information about, 38

Client/server communication, initiating, 14

clr message, 221–222

Index 309

Clustering, 251–254

Cluster nodes, failure of, 269

cnonce parameter, 139, 141, 147

Comment attribute, 41

CommentURL attribute, 41

Communications, eavesdropping on, 157–158. See also

http communications

Communications protocol, upgrades to, 110

Conditional requests, 86

Confidentiality, 161

Connection: close header, 72

Connection: Keep-Alive header, 72

Connection: Meter header, 100

Connection: Upgrade header, 110

Connection header, 70–72, 170, 171

Connection types, performance of, 18–19

CONNECT method, 49, 110, 172

CONNECT operation, 24

Content-Encoding header, 73–74

Content encodings, 59

Content-Language header, 74

Content-Length header, 74–75, 108, 126

Content-Length header field, 107

Content-Location header, 75, 94

Content-MD5 header, 76–77

Content protection, 77

Content-Range header, 77–78, 103, 122

Content-Type header, 73, 78–79

Content types, 57

Cookie attributes, 41–42

default values for, 42–43

Cookie header, 79, 80

Cookies, 37–45

accepting, 42–44

defined, 39

http rules governing, 39

rejecting, 43–44

returning, 44–45

rules for rejecting, 44

state management, 106

tracking Web sessions via, 256

Cookie2 header, 80

Cooperating servers, 26–37

count directive, 101

count=n/m directive, 99

count values, 101

crlf symbol, 48

Cryptographic algorithms, 225

Cryptographic calculation hardware, 226

Cryptographic digest, 212

Cryptographic principles, 134–135

Cryptography, 150. See also Public key cryptography

D

Database Management Systems (dbmss), 260–265, 277

vendor specifics for, 261

Database reliability technologies, 264

Database replication, 262–263

Datagrams, 7

Date header, 61, 80–81

Dates, If-Range header and, 91–92

DELETE method, 49

DELETE operation, 23–24

Denial-of-service attacks, 249

Digest Authentication. See Improved Digest

Authentication; Original Digest Authentication

Digest Authentication Enhancements, 142

Digest calculation, with MD5-sess algorithm, 151–152

Digest values, representing, 138

Digital certificate, 161

Directives, 99–101

Discard attribute, 41, 42

dns exchange, 28

dns name, 85

310 HTTP Essentials

dns responses, 245–246

dns servers, 183

Document view resetting, 121–122

$ character, 79

Domain attribute, 42, 42

Domain Name System (dns), 199, 243. See also dns

entries

Domain Name System (dns) protocol, 180

domain parameter, 137

dont-report directive, 99, 100

do-report directive, 99, 100

Dynamic Web applications, 256–257

E

Echo messages, 213, 214

Electronic commerce, 163

Elliptic curve cryptography, 169

en code, 60

End user authentication, 265

Entity headers, 48, 51, 52

Entity tags, 81, 86

versus dates, 92

ETag header, 81–82, 136

ETag values, 82, 86, 90

Expect: 100-continue header, 117, 118

Expect header, 83–84, 127

Expires header, 66, 84, 102, 107

Exterior firewalls, 254–255. See also Firewalls

F

Failed intermediaries, 94–95

Failover support, session-level, 260

Field values, in message headers, 54

File deletion, 23–24

File upload, 22–23

fin (finished) flag, 15

FindProxyForURL() function, 195

Firewalls, 32, 249, 254–255

500 Internal Server Error status code, 82, 127

501 Not Implemented status code, 127

502 Bad Gateway status code, 128

503 Service Unavailable status code, 105, 128

504 Gateway Timeout status code, 128

505 Version Not Supported status code, 128

5xx status codes, 117, 127–128

Forwarding exceptions, defining, 210

400 Bad Request status code, 124

401 Unauthorized response, 118, 132, 135, 136, 142,

146

401 Unauthorized status, 115

401 Unauthorized status code, 124, 130

402 Payment Required status code, 124

403 Forbidden status code, 125

404 Not Found status code, 125

405 Method Not Allowed status, 65

405 Method Not Allowed status code, 125

406 Not Acceptable status code, 125

407 Proxy Authentication Required status, 102

407 Proxy Authentication Required status

code, 125–126

408 Request Timeout status code, 126

409 Conflict status code, 126

410 Gone status code, 126

411 Length Required status code, 126

412 Precondition Failed status, 87, 91, 93

412 Precondition Failed status code, 126

413 Request Entity Too Large, 118

413 Request Entity Too Large status code, 126

414 Request-URI Too Long status code, 126

415 Unsupported Media Type status code, 127

416 Requested Range Bad status code, 127

417 Expectation Failed status, 83

417 Expectation Failed status code, 127

Index 311

426 Upgrade Required status code, 127, 171

4xx status codes, 116–117, 124–127

Frames, 7

Frequent clients, protection for, 149–152

From header, 84

G

Gateways, 32–33

General headers, 48, 51, 52

Generic Routing Encapsulation (gre), 203, 208

GET message, 171

GET method, 49, 90

GET operation, 19–20, 29, 31

GET request, 40, 41, 88, 101, 104, 119, 120, 122, 123, 136,

170, 213

Global load balancers, 181–182, 184–185

Global load balancing, 179–180, 244–246

versus reverse proxy caching, 193

gnu gzip format, 59

gzip program, 73

gzip transfer encodings, 106

H

Hardware, for cryptographic calculations, 226

Hardware clustering, 261

Hardware clustering products, 273–274

Header fields, in http messages, 53–115

Headers. See also http headers

cache servers and, 35

updating, 221

HEAD method, 49, 50, 74, 78, 90

HEAD operation, 25

HEAD request, 37, 101, 119, 122

Hexadecimal expressions, 138

High availability, 257–260

“Hijacking,” 212

Hop-by-hop headers, 71

Host-based intrusion detection, 271

Host header, 29, 85–86

Host parameter, 195

htcp messages, 217. See also Hyper Text Caching

Protocol (htcp)

htcp monitor responses, 220–221

html. See Hypertext Markup Language (html)

http authorization, 131. See also Hypertext Transfer

Protocol (http)

http caching, icp and, 216

http communications, 47–128. See also http

 messages

proxy servers and, 32

securing, 162

status codes and, 115–128

http content, modifications to, 77

http Content-Encodings, 73

http header fields, 55–57

http headers, 199. See also Headers

version 1.1, 236–238

http implementation, identifying, 110–111

http messages, 6–8, 8, 47. See also messages

header fields in, 53–115

rules for determining the end of, 75

structure of, 48–53

http methods, 49–50

version 1.1, 235

http performance. See Advanced caching

http persistence, 166, 244

http port 443, 158

http protocol, 27, 58

user operations in, 19–23

http redirection, 245

http requests, 15, 48–51

distributing, 180–182

http responses, 51–53

312 HTTP Essentials

http security mechanisms, 130

http servers, performance of, 108

http sessions, upgrading to tls within, 169–172

http specifications, 81

references for, 280

http standards, 3

http state management, 79, 106

http status code categories, 53

https uri scheme, 158

http switches, 191

http versions

differences among, 231–234

headers available in, 233–234

methods available in, 232

version 0.9, 229, 230

version 1.0, 230–231

version 1.1, 16, 29, 71, 85, 102, 108, 114, 142, 230, 231,

232

references for, 282

in the Request-Line, 50–51

support for, 234–239

Hyper Text Caching Protocol (htcp), 194, 216–222.

See also htcp messages

cache information provided by, 219

Hypertext Markup Language (html), 3

Hypertext Transfer Protocol (http), 1–2, 5, 256. See

also http entries; Hypertext Transfer Protocol

(http) operation; Secure http

accelerating, 177–228

evolution and deployment of, 229–239

securing, 129–175

software used to implement, 105

World Wide Web and, 2–3

Hypertext Transfer Protocol (http) operation, 13–45

additional operations in, 24–26

clients and servers in, 13–19

cookies and state maintenance in, 37–45

cooperating servers and, 26–37

I

icmp echo requests, 185

icp messages, 214, 216. See also Internet Cache

Protocol (icp)

icp query exchange, 215

Identity encoding, 59

If-Match header, 82, 86–88, 123, 126

If-Modified-Since header, 88–90, 123

If-None-Match header, 82, 90

If-Range header, 91–92

If-Unmodified-Since header, 92–93

Improved Digest Authentication, 138, 139, 141, 142–143.

See also Original Digest Authentication

Informational status codes, 117–119

Integrity protection, 143, 152–156

client digest calculation for, 154–155

server digest calculation for, 156

triggering, 154

Interior firewalls, 254–255

Intermediate adversaries, 153

Intermediate cache servers, 35

Intermediate dns servers, 246

Intermediate server failure, 94–95

detecting, 98

Intermediate servers, 26, 102, 112

Intermediate systems, limiting, 96

Internal network management, 268–270

International Standards Organization (iso), 5

International Web sites, 179–180

Internet

demand for Web sites and, 27

references for, 279–280

roots of, 2

Web site connection to, 242–249

Internet architecture, 3–8

Index 313

Internet Assigned Numbers Authority (iana), 57, 59,

103, 248

Internet Cache Protocol (icp), 194, 212–216. See also

icp messages

shortcomings of, 216

Internet connections, multiple, 276

Internet connectivity, load balancers and, 183

Internet Corporation for Assigned Names and

Numbers (icann), 57, 248

Internet Engineering Steering Group (iesg), 231

Internet Engineering Task Force (ietf), 103, 168, 169,

230

references for, 279–280

Internet Explorer, 111, 158, 188

dialog box for, 195

Internet firewall, 188

Internet Protocol (ip), 5. See also ip entries

Internet routing protocols, 248

Internet Service Providers (isps), 27, 200

diversity of, 243

http caching and, 189–190

Internet services, 4

Intrusion detection, 270–273, 277

ip addresses, 180. See also Internet Protocol (ip)

assignment of, 29

obtaining, 248

in Web hosting, 85

ip addressing, redundant connections and, 247

ip diagram, 7

iso 8859-1 character set, 58

J

JavaScript code, 195

JavaScript object, 30

K

Keep-Alive header, 72

Kerberos, 169

Key management, 159

Key pairs, 160

Keys, 149–150, 159. See also Private key; Public key

Key value, exchanging, 159–160

L

Language hierarchy, 60

Languages, designating, 59–60

Last-Modified header, 80, 88, 89, 93

Layer 2 forwarding, 208

Layer 3 forwarding, 208

Layer 4 (7) switching, 182

Linefeed character, 48

LINK method, 232

Links, redundant, 242–246

Load balancers, 181–182

Load balancing, 177–186

request distribution and, 180–182

server location and, 178–180

target server and, 182–186

target server determination and, 182–186

Load Factor, 224

Local area network, 34

Local cache management, 111

Local caches, monitoring the contents of, 219

Local load balancers, 183, 185

Local load balancing, 178–179, 251–254

Location header, 75, 93–94, 119, 181

Logical communication, 6

Login process, for Web sites, 133

Loops, 95–96, 98

314 HTTP Essentials

M

Macintosh systems, 48

Man-in-the-middle attacks, 153

Max-Age attribute, 42, 43

max-age directive, 64, 66–67, 84

max-age=0 directive, 68

max-age value, 63

Max-Forwards, 112

Max-Forwards header, 94–98

max-reuses=n directive, 99

max-reuses directive, 100

max-stale directive, 67

max-uses=n directive, 99

max-uses directive, 100

MD5 algorithm, 150

MD5-sess algorithm, 150, 151

Media types, 57

Message body, 48, 51, 52

preferences for, 59

transfer encoding format of, 108

Message content, changes to, 77

Message digest, 135

Message Digest 5 (md5) algorithm, 76, 135

Message digest algorithms, 135

Message encryption, 156–157

Message headers, 48, 51, 53–57, 70

in the Status-Line, 52

Message integrity, 161

Message length, determining, 74

Messages. See also http messages

interception of, 153

tracing the path of, 112–113

Meter: timeout=n directive, 100

Meter directives, 99–100

Meter header, 36–37, 99–101

Metering process, 100

Methods. See http methods

Microsoft Internet Explorer. See Internet Explorer

min-fresh directive, 67

Mirrored Web sites, 243

reliability through, 250–251

mon messages, 219–220

Multi-homing, 246–249

Multi-layer security architectures, 254–255

Multilevel hierarchy, 60

Multiple application servers, 259, 260

Multiple Internet connections, 276

Multiple Internet Service Providers (isps), 243

Multiple ip addresses, 247–248

Multiple proxies, 31

Multiple servers, TRACE messages and, 26

Multipurpose Internet Mail Extensions (mime), 76

must-revalidate directive, 67–68

Mutual authentication, 145–149

N

nc parameter, 139, 141, 145

necp_exception_add_ack message, 209

necp_exception_add message, 209

necp_exception_del_ack message, 209

necp_exception_del message, 209

necp_exception_query message, 209

necp_exception_reset_ack message, 209

necp_exception_reset message, 209

necp_exception_resp message, 209

necp_init_ack message, 205, 206

necp_init message, 205, 206

necp_keepalive_ack messages, 207

necp_keepalive messages, 207

necp messages, 205–209. See also Network Element

Control Protocol (necp)

necp_start_ack message, 208

necp_start message, 208

Index 315

necp_stop_ack message, 208

necp_stop message, 208

Netscape Communications, 157, 168

Netscape Navigator, 111

Network-based intrusion detection, 272

Network Element Control Protocol (necp), 191, 204–

212. See also necp messages

security support in, 211

Network management/monitoring, 277

Network technology, 4

nextnonce parameter, 140, 141, 142

no-cache="Accept-Ranges", 68

no-cache directive, 68

nonce parameter, 136, 137, 139, 140

no-store directive, 68

no-transfer directive, 69

O

Objects

dating in a local cache, 93

deleting from servers, 23

local copies of, 213, 214

multiple requests for, 86–87

requesting part of, 78, 91–92

in Web pages, 16

100 Continue status, 82, 83

100 Continue status code, 117–118

101 Switching Protocols response, 118–119

101 Switching Protocols status, 82, 110

One-way functions, 135

1xx status codes, 115, 117–119

only-if-cached directive, 69

opaque parameter, 137, 140

Open Systems Interconnection Reference Model, 5

OPTIONS message, 24–25, 170

OPTIONS method, 50, 94

Organizations, proxy caches and, 187–188

Original Digest Authentication, 133–142. See also

Improved Digest Authentication

client calculation for, 138

Origin servers, 31, 62, 81

client interaction and, 35–36

directives and, 99

htcp and, 221

load reduction on, 34–35

usage reports to, 101

P

pac helper functions, 196–197. See also Proxy Auto

Configuration (pac)

Packets, 5, 7

pac location from wpad, default values for, 199

pac retrieval options, 196

pac scripts, 189, 190

Padlock icon, 133, 158, 159

Page views, counting and limiting, 35–37

Parallel servers, 261–262

Passive monitoring, 273

Passwords, 130, 134, 212

Path attribute, 42, 43

Performance. See also Advanced caching

of connection types, 18–19

If-Range header and, 91–92

Persistence, 15–17, 257

Persistent connections, 17, 108

Connection header and, 71

Persistent cookies, 43

Pipelining, 17–19, 141

Platform security, 265–266

Policy enforcement, proxy servers and, 32

Port attribute, 42, 43

POST message, 152

POST method, 50, 133

POST operation, 20–22

316 HTTP Essentials

POST requests, 120, 123, 136

PostScript file, 73

Pragma: no-cache response, 102

Pragma header, 102

Preconfiguration, of Web browsers, 188–189

Privacy, cookies and, 39. See also Security

private directive, 69

Private key, 160

Probe requests, 184

Probes, in site monitoring, 266–267, 268

Profiling strategy, 273

Protocol identifier, 204, 208

Protocol interface, 6

Protocol layers, 3–8

Protocol stack, 4, 8

Protocol upgrades, 110, 118–119

Provider-independent ip addresses, 248

Proxy-Authenticate header, 102, 126–127

Proxy-Authorization header, 103

Proxy Auto Configuration (pac), 189. See also pac

entries

Proxy Auto Configuration (pac) scripts, 194–197

Proxy caches, 186, 187–189

Proxy operation, 34

proxy-revalidate directive, 69

Proxy servers, 26, 30–32. See also Cache servers;

Servers

authentication with, 126–127

communication through, 83–84

directives and, 99

functions of, 32

If-Modified header and, 89

message path through, 112–113

metering process and, 100

receipt of invalid response by, 128

tls upgrades and, 172

public directive, 69–70

Public key, 160

Public key authentication, 160

Public key certificate, 161

client possession of, 166

Public key cryptography, 157, 159–161

Public key encryption algorithms, 160

Public key technology, disadvantages of, 160

PUT method, 50, 65, 87, 93

PUT operation, 22–23

PUT requests, 90, 93, 126, 136

Q

qop parameter, 137, 138, 140, 141, 143, 155

qop value, 154

Quality factor, 57, 58, 106

Queried systems, 207–208

Query messages, 211

R

Range header, 78, 89, 91, 103, 122, 127

Range requests, 60–61

realm parameter, 136, 137, 139, 140

Reason-Phrase, 53

Redirection, client, 29–30

Redirection status codes, 122–124

Redundant Array of Inexpensive Disks (raid) system,

277

Referer header, 103–104

Reliability, Web site, 241–242

Remote disk mirroring, 261

Replay attacks, protection against, 144–145

Request headers, 48, 51

Request-Line, 48–51

http version in, 50–51

Request looping, 94, 95–96, 98

Index 317

Requests

alternative locations for, 122

conditional, 86

distributing, 178, 180–182

effect on traffic sessions, 211

reissuing, 122

retrying, 105

Request-URI, 50

Réseaux ip Européens, 248

Resource age, estimates of, 63

Resource format, 73

Resources. See also Uniform Resource Identifiers

(uris)

age of, 61

forbidden, 125

identifying, 81–82

multiple editing of, 86–87

new locations for, 123, 124

range of, 127

range requests for, 60–61

requesting parts of, 103

Response headers, 52

Response messages, size of, 108–109

response parameter, 139, 140

Response preferences, 59–60

Responses, invalid, 128

Retry-After header, 105, 126, 128

Return character, 48

Reverse proxy caches, 186, 187

Reverse proxy caching, 191–192

versus global load balancing, 193

rfc 850 specification, 80

rfc 1123 specification, 80

rfc 2045 specification, 76

Rivest, Ron, 135

Round-robin algorithm, 183

Round-trip time measurements, 215–216

Routing algorithm, 223

rspauth parameter, 141

S

Scalability

local load balancing and, 252

Web site, 242

Search Database button, 21

Secret value, 136

Secure attribute, 42, 43

Secure hash, 135

Secure Hash Algorithm (sha), 135

Secure Hash Algorithm (sha-1) function, 212

Secure http (shttp), 130, 172–175

cryptographic negotiation options for, 174

http options for, 173

urls in, 174

Secure http headers, 173

SECURE method, 172

Secure Sockets Layer (ssl), 156–168. See also ssl

entries

operation of, 161–168

in the protocol stack, 157–158

versus Transport Layer Security, 168–169

Secure Sockets Layer (ssl) protocol, 129, 133

Security. See also Firewalls; Intrusion detection;

Replay attacks; Secure Sockets Layer (ssl)

adding to http, 129

in Improved Digest Authentication, 142

Web site, 241

Security architectures, multi-layer, 254–255

Security protocols, references for, 280–281

Security services, 143, 161–162

Security support (Network Element Control

Protocol), 211

Security systems, 169

Segments, 7

318 HTTP Essentials

Serial connections, 18

Server authentication, 146–147, 163

Server calculation, 148–149

Server clocks, 89

Server clusters, 253–254, 258–259

Server digest calculation, for integrity protection, 156

Server error, 82

Server error status codes, 127–128

Server header, 105. See also User-Agent header

Server location, role in load balancing, 178–180

Server response problems, 94–98

Servers, 13–19. See also Cache servers; Proxy servers

capabilities supported by, 24–25

cookie creation by, 39

cooperating, 26–37

global load balancing and, 180

intermediate, 26, 102, 112

network path to, 25–26

problems with, 89–90

sending information to, 20–23

“testing the waters with,” 117

Service providers, depth of, 267. See also Internet

Service Providers (isps)

Services

building, 241

integrity protection, 152–156

optional, 149

Session id, 167

Session-level failover support, 260

Set-Cookie header, 79, 80, 106

Set-Cookie2 header, 79, 80, 106

set message, 221–222

Signatures, 273

Signing process, 161

Simple Network Management Protocol (snmp), 269–

270

Site failures, 180

Site identifiers, 28

s-maxage directive, 70

ssl client authentication, 166

ssl processing, specialized, 225–226

ssl session negotiation, 164

ssl sessions

establishing, 163

resuming previously established, 167–168

stale parameter, 137

Standby databases, 263–264

State information, sharing, 257

Stateless operation, 38

State maintenance, 37–45

cookies and, 38–39

State management cookies, 38

State management specification, 80

Static Web sites, 254

Status-Code, 53

Status codes, 19–20, 22, 29, 115–128

client error, 124–127

informational, 117–119

redirection, 122–124

server error, 127–128

successful, 119–122

version 1.1, 238–239

Status-Line, in http responses, 51–52

Strong ETag values, 82, 90

Structured Query Language (sql), 32

Successful status codes, 119–122

syn (synchronize) flag, 15

System building, 241

T

Target servers, determining, 182–186

tcp connections, 15. See also Transmission Control

Protocol (tcp)

tcp multiplexing, 227–228

Index 319

tcp port numbers, 169

tcp processors, 227–228

TE header, 59, 106–107

Telecommunications industry, 243

Temporary cookies, 43

Testing and Staging, 274

text content type, 57

text/* content type, 57

Text line endings, conventions for indicating, 48

300 Multiple Choices status code, 122

301 Moved Permanently status code, 122–123

302 Found status code, 93, 123, 186

303 See Other status code, 123

304 Not Modified status, 88, 90, 101

304 Not Modified status code, 123

305 Use Proxy status code, 123

307 Temporary Redirect status code, 124

“Three-way handshake,” 15

3xx status codes, 116, 122–124

timeout=n directive, 99, 100

Timestamp, 136

“Time to Live” value, 246

tls handshake negotiation, 170

TRACE message, 25–26

TRACE method, 50, 94, 96

TRACE request, 98, 112

TRACE response, 113

Tracking and Logging, 274

Traffic interception, 181–182

Traffic sessions, effect of requests on, 211

Trailer fields, 107

Trailer header, 107

Transfer-Encoding, 73

Transfer encoding format, 108

Transfer-Encoding header, 107–109

Transfer encodings, 106–107

Transmission Control Protocol (tcp), 5, 7. See also

tcp entries

Transparent caches, 186, 187

Transparent cache servers, 190–191

Transparent caching, Web Cache Communication

Protocol and, 200–203

Transport Layer Security (tls), 110, 168–172

control of protocol in, 169

upgrading to, 169–172

version number confusion in, 168

Transport Layer Security (tls) protocol, 129, 133

Transport Level Security (tls), 127

Transport protocol, 5

tst messages, 217, 218

Tunnels, 33

200 OK response, 152

200 OK status, 89, 91, 93, 96, 101, 103

200 OK status code, 119

201 Created response, 93

201 Created status, 119

202 Accepted status, 120

203 Non-Authoritative Information status

code, 120

204 No Content status, 120–121

205 Reset Content status, 121–122

206 Partial Content status, 122

206 Partial Content status code, 103

2xx status codes, 115–116, 119–122

U

udp echo port, 214

Unicode character set, 58–59

Uniform Resource Identifiers (uris), 9–10, 19, 22, 75.

See also Resources

components of, 10

permanent changes in, 122–123

Uniform Resource Locators (urls), 9

320 HTTP Essentials

unix compress format, 59

unix systems, 48

UNLINK method, 232

Upgrade: tls/1.0 header, 118–119

Upgrade header, 70, 71, 110, 170, 171

Upload button, 23

uri parameter, 140

url mangling, 256

url parameter, 195

Usage reports, 101

User-Agent header, 54, 105, 110–111

User-Agent value, 111

username parameter, 140

Usernames, 134

User operations, in http protocol, 19–23

User passwords, 130

Users, improving web experience of, 177–228

V

Vary header, 111

Version attribute, 42

Via header, 31–32, 96, 98, 112–113

Via option, 26

Virtual hosts, 27–29

W

Warning header, 113–114

wccp_assign_buckets message, 203

wccp messages, 201, 202

Weak ETag values, 82, 86, 90

Web applications, 255–266, 276

dynamics of, 256–257

security of, 265

Web authentication, 130–156

Web browsers, 1, 2, 243–244

client role in, 14

proxy cache servers and, 188–189

proxy servers and, 32

Web browsing, 22

Web Cache Communication Protocol (wccp), 191, 194,

200–203. See also wccp messages

version 2, 204

versus Network Element Control Protocol, 204

Web caches, 81

Web environment, redirection and, 30

Web experience, improving, 177–228

Web forms, 20–22

Web hosting, 27–29, 85–86

Web maintenance/upgrade procedures, 273–274

Web page retrieval, 19–20

Web pages, 3, 16

following links on, 103–104

tailoring to specific users, 82

Web performance, cache servers and, 33–34

Web Proxy Auto-Discovery (wpad), 189, 197–200. See

also wpad entries

Web servers

failed, 244–245, 246

monitoring the health of, 184

Web session information, protection levels for, 257

Web sessions, tracking, 256

Web site monitoring, external, 266–268

Web sites

applications and, 255–266

availability of, 266–274

building, 241–277

bullet-proof, 241–242, 275

caching control by, 191–192

demand for, 27

dynamic, 247

international, 179–180

Internet connections for, 242–249

login process for, 133

Index 321

mirrored, 243, 250–251

system failures in, 250–251

systems and infrastructure for, 250–255

Web systems, 276

Web traffic, 2

Wildcards, 57

will-report-and-limit directive, 99, 100

wont-ask directive, 99, 101

wont-limit directive, 100, 100

wont-report directive, 100, 100

World Wide Web, 1, 256. See also Web sites

Hypertext Transfer Protocol (http) and, 2–3

security on, 129

virtual hosts and, 27–29

World Wide Web Consortium, 234

wpad protocol, 189, 190. See also Web Proxy Auto-

Discovery (wpad)

WWW-Authenticate header, 102, 114–115, 124, 130–131,

135

WWW-Authenticate parameters, 137

WWW-Authenticate response, 152

X

x00 status code, 115

Electronic Edition License Agreement
1. License. John Wiley & Sons, Inc. (“Wiley”) hereby grants you, and you accept, a non-exclusive and non-
transferable license, to use the accompanying cd-rom, referred to as the “Software”.

2. Term. This License Agreement is effective until terminated. You may terminate it at any time by destroying
the Software and all copies made (with or without authorization).

3. Authorized Use of Software. You shall have the right to load the [Software] on a single computer and at
single location designated by you. You may not use the Software on a network or multi-user basis. Upon termi-
nation of this License, you agree to destroy all copies in any form. If you transfer possession of any copy of
the software to another party, your license is automatically terminated.

4. Use Restrictions. You may not (a) copy the Software, except to load it into a computer in accordance with
instructions set forth in the User’s Manual; (b) distribute copies of the Software to any other person; (c) modify,
adapt, translate, reverse, engineer, decompile, disassemble, or create derivative works based on the Software (d)
copy, download, store in a retrieval Software, publish, transmit, or otherwise reproduce, transfer, store, dissemi-
nate, or use, in any form or by any means, any part of the data contained within the Software except as expressly
provided for in this License; (e) transfer, resell, sublicense, lease, or grant any other rights of any kind to any
individual copy of the Software to any other persons; (f) remove any proprietary notices, labels, or marks on the
Software. You shall take reasonable measures to maintain the security of the Software.

5. Proprietary Rights. You acknowledge and agree that the Software is the sole and exclusive property of Wiley,
and the Software is licensed to you only for the term of this License and strictly under the terms hereof. Wiley
owns all right, title, and interest in and to the content of the Software. Except for the limited rights given to you
herein, all rights are reserved by Wiley.

6. Warranties, Indemnities, and Limitation of Liability. The software is provided “as is,” without war-
ranty of any kind, express or implied, including but not limited to the implied warranties of
merchantability or fitness for a particular purpose. Wiley neither gives nor makes any other
warranties or representations under or pursuant to this license. Wiley does not warrant, guarantee
or make any representations that the functions contained in the Software will meet your particular requirements
or that the operation of the Software will be uninterrupted or error free. The entire risk as to the results and
performance of the Software is assumed by you. If the Software disc is defective in workmanship or materials
and Wiley is given timely notice thereof, Wiley’s sole and exclusive liability and your sole and exclusive remedy,
shall be to replace the defective disc. In the event of a defect in a disc covered by this warranty, Wiley will re-
place the disc provided that you return the defective disc to Wiley together with a copy of your receipt. If Wiley
is unable to provide a disc that is free from such defects, you may terminate this License by returning the disc
and all associated documentation to Wiley for a full refund. The foregoing states your sole remedy and Wiley’s
sole obligation in the event of the occurrence of a defect coming within the scope of the limited warranty.

In no event shall wiley, its suppliers, or anyone else who has been involved in the creation, pro-
duction or delivery of the software or documentation be liable for any loss or inaccuracy of
data of any kind or for lost profits, lost savings, or any direct, indirect, special, consequential or
incidental damages arising out or related in any way to the use or inability to use the software
or data, even if wiley or its suppliers have been advised of the possibility of such damages. This
limitation of liability shall apply to any claim or cause whatsoever whether such claim or
cause is in contract, tort or otherwise.

The limited warranty set forth above is in lieu of all other express warranties, whether oral or written.

(Some states do not allow exclusions or limitations of implied warranties or liability in certain cases, so the
above exclusions and limitations may not apply to you.)

7. General.

(a) This License may not be assigned by the Licensee except upon the written consent of Wiley.

(b) The License shall be governed by the laws of the State of New York.

(c) The above warranties and indemnities shall survive the termination of this License.

(d) If the Licensee is located in Canada, the parties agree that it is their wish that this License, as well as all
other documents relating hereto, including notices, have been and shall be drawn up in the English language
only.

	Index
	A-B
	B-C
	C-D
	D-F
	F-H
	H-I
	I-L
	M-N
	N-P
	P-R
	R-S
	S-T
	T-U
	U-W
	W-Z

	Contents
	Chapter 1: Introduction
	1.1 HTTP and the World Wide Web
	1.2 Protocol Layers
	1.3 Uniform Resource Identifiers
	1.4 Organization of This Book

	Chapter 2: HTTP Operation
	2.1 Clients and Servers
	2.1.1 Initiating Communication
	2.1.2 Connections
	2.1.3 Persistence
	2.1.4 Pipelining

	2.2 User Operations
	2.2.1 Web Page Retrieval – GET
	2.2.2 Web Forms – POST
	2.2.3 File Upload – PUT
	2.2.4 File Deletion – DELETE

	2.3 Behind the Scenes
	2.3.1 Capabilities – OPTIONS
	2.3.2 Status – HEAD
	2.3.3 Path – TRACE

	2.4 Cooperating Servers
	2.4.1 Virtual Hosts
	2.4.2 Redirection
	2.4.3 Proxies, Gateways, and Tunnels
	2.4.4 Cache Servers
	2.4.5 Counting and Limiting Page Views

	2.5 Cookies and State Maintenance
	2.5.1 Cookies
	2.5.2 Cookie Attributes
	2.5.3 Accepting Cookies
	2.5.4 Returning Cookies

	Chapter 3: HTTP Messages
	3.1 The Structure of HTTP Messages
	3.1.1 HTTP Requests
	3.1.2 HTTP Responses

	3.2 Header Fields
	3.2.1 Accept
	3.2.2 Accept-Charset
	3.2.3 Accept-Encoding
	3.2.4 Accept-Language
	3.2.5 Accept-Ranges
	3.2.6 Age
	3.2.7 Allow
	3.2.8 Authentication-Info
	3.2.9 Authorization
	3.2.10 Cache-Control
	3.2.11 Connection
	3.2.12 Content-Encoding
	3.2.13 Content-Language
	3.2.14 Content-Length
	3.2.15 Content-Location
	3.2.16 Content-MD5
	3.2.17 Content-Range
	3.2.18 Content-Type
	3.2.19 Cookie
	3.2.20 Cookie2
	3.2.21 Date
	3.2.22 ETag
	3.2.23 Expect
	3.2.24 Expires
	3.2.25 From
	3.2.26 Host
	3.2.27 If-Match
	3.2.28 If-Modified-Since
	3.2.29 If-None-Match
	3.2.30 If-Range
	3.2.31 If-Unmodified-Since
	3.2.32 Last-Modified
	3.2.33 Location
	3.2.34 Max-Forwards
	3.2.35 Meter
	3.2.36 Pragma
	3.2.37 Proxy-Authenticate
	3.2.38 Proxy-Authorization
	3.2.39 Range
	3.2.40 Referer
	3.2.41 Retry-After
	3.2.42 Server
	3.2.43 Set-Cookie2
	3.2.44 TE
	3.2.45 Trailer
	3.2.46 Transfer-Encoding
	3.2.47 Upgrade
	3.2.48 User-Agent
	3.2.49 Vary
	3.2.50 Via
	3.2.51 Warning
	3.2.52 WWW-Authenticate

	3.3 Status Codes
	3.3.1 Informational (1xx)
	3.3.2 Successful (2xx)
	3.3.3 Redirection (3xx)
	3.3.4 Client Error (4xx)
	3.3.5 Server Error (5xx)

	Chapter 4: Securing HTTP
	4.1 Web Authentication
	4.1.1 Basic Authentication
	4.1.2 Original Digest Authentication
	4.1.3 Improved Digest Authentication
	4.1.4 Protecting Against Replay Attacks
	4.1.5 Mutual Authentication
	4.1.6 Protection for Frequent Clients
	4.1.7 Integrity Protection

	4.2 Secure Sockets Layer
	4.2.1 SSL and Other Protocols
	4.2.2 Public Key Cryptography
	4.2.3 SSL Operation

	4.3 Transport Layer Security
	4.3.1 Differences from SSL
	4.3.2 Control of the Protocol
	4.3.3 Upgrading to TLS within an HTTP Session

	4.4 Secure HTTP

	Chapter 5: Accelerating HTTP
	5.1 Load Balancing
	5.1.1 Locating Servers
	5.1.2 Distributing Requests
	5.1.3 Determining a Target Server

	5.2 Advanced Caching
	5.2.1 Caching Implementations
	5.2.2 Proxy Auto Configuration Scripts
	5.2.3 Web Proxy Auto-Discovery
	5.2.4 Web Cache Communication Protocol
	5.2.5 Network Element Control Protocol
	5.2.6 Internet Cache Protocol
	5.2.7 Hyper Text Caching Protocol
	5.2.8 Cache Array Routing Protocol

	5.3 Other Acceleration Techniques
	5.3.1 Specialized SSL Processing
	5.3.2 TCP Multiplexing

	Appendix A: HTTP Versions
	A.1 HTTP’s Evolution
	A.2 HTTP Version Differences
	A.3 HTTP 1.1 Support

	Appendix B: HTTP in Practice
	B.1 The Internet Connection
	B.2 Systems and Infrastructure
	B.3 Applications
	B.4 Staying Vigilant
	B.5 The Big Picture

	References
	General References
	HTTP Specifications
	Separate Security Protocols
	Caching Protocols
	Previous HTTP Versions

	Glossary

