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CHAPTER 1 
 

Introduction —  
HTTP, the Internet, and the Web 
 

Today’s Wall Street Journal includes 197 ads, and 159 of 
them—over 80 percent—feature a World Wide Web address. 
Even more remarkably, only 121 (61 percent) list a telephone 
number. If advertisements are a reflection of society, then 
here in the United States, at least, the Web has become an 
indispensable part of our lives. 

This book is about what makes the Web tick. It explains the 
protocol that defines how Web browsers communicate with 
Web servers, the mechanisms that keep that communication 
secure from counterfeits and eavesdroppers, and the tech-
nologies that accelerate our Web experience. In this first 
chapter we’ll get a quick introduction to a few important 
concepts, including the relationship between the Hypertext 
Transfer Protocol (http) and the Web, the notion of proto-
col layers, and the Web’s idea of an address. The final section 
outlines the rest of the text. 

By the end of the book we’ll have covered all aspects of the 
Hypertext Transfer Protocol: its operation, message formats, 
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security mechanisms, and acceleration techniques. We will 
also see how http has evolved, and how newer implementa-
tions maintain backward compatibility with old systems. 
And finally, we will take what we’ve learned and apply it to 
building scalable, highly available, and secure Web site 
architectures. 

1.1 HTTP and the World Wide Web 

The Internet can trace its roots to research projects begun in 
the 1960s by the United States Department of Defense. A 
British physicist working in Switzerland, however, has ar-
guably influenced today’s Internet more than any other per-
son. It was in March 1989 that Tim Berners-Lee first 
outlined the advantages of a hypertext-based, linked infor-
mation system. And by the end of 1990, Berners-Lee, along 
with Robert Cailliau, created the first Web browsers and 
servers. Those browsers needed a protocol to regulate their 
communications; for that Berners-Lee and Cailliau designed 
the first version of http. 

Since then, Web traffic has grown to dominate the Internet. 
By 1998, http accounted for over 75 percent of the traffic on 
Internet backbones1 dwarfing other protocols such as email, 
file transfer, and remote login. Today, at least in the common 
vernacular, the World Wide Web is the Internet. And the 
Web continues to grow. In the fall of 2000, as this book is 
nearing completion, the Censorware Project reports that the 
Web has roughly: 

• 2 700 000 000 pages 

• 50 700 000 000 000 bytes of text 

• 608 000 000 images 

• 10 100 000 000 000 bytes of image data 

                                                      
1 K. Claffy, Greg Miller, and Kevin Thompson. “The Nature of the Beast:  
Recent Traffic Measurements from an Internet Backbone.” Presented at 
the inet ’98 Conference, April 1998. 
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During the 24 hours previous, the Web added: 

• 5 490 000 new pages 

• 103 000 000 000 new bytes of text 

• 1 240 000 new images 

• 20 600 000 000 new bytes of image data 

The Hypertext Transfer Protocol has grown along with the 
Web. The original specification for http fits comfortably on 
a single page and, at 656 words long, can be read and under-
stood in just a few minutes. In contrast, the specification for 
http version 1.1 spans several documents. The core docu-
ment alone packs nearly 60 000 words on 176 pages. 

The 176 pages of the core http specification, along with 
other documents that make up the http standard, define the 
rules by which Web browsers, Web servers, proxies, and 
other Web systems establish and maintain communications 
with each other. The http standards do not dictate what 
information the systems exchange once they establish com-
munication. Indeed, one of http’s greatest strengths is its 
ability to accommodate almost any kind of information ex-
change. Web pages, for example, are often created according 
to the rules for the Hypertext Markup Language, or html 
(also invented by Berners-Lee). But http is equally adept at 
transferring remote printing instructions, program files, and 
multimedia objects. With the ubiquity of Web browsers, the 
pervasiveness of the Internet, and the power and flexibility of 
http, the protocol Berners-Lee and Cailliau developed may 
ultimately become the foundation for all network-based 
computing. 

1.2 Protocol Layers 

To understand http, it helps to know a little about the ar-
chitecture of the Internet. We can look at the Internet’s ar-
chitecture from two perspectives. From one view, the 
Internet is a loosely connected collection of networks of all 
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sizes and types that cooperate to exchange information. In-
stead of considering physical systems, however, we’ll focus on 
the software that controls those systems. From that perspec-
tive, the Internet is a collection of different communication 
protocols; these protocols cooperate to provide services. 

Providing services over the Internet is actually a very com-
plex undertaking. To make the challenge more manageable, 
the Internet designers divided the work into different com-
ponents and assigned those components to several different 
communications protocols. The designers further organized 
those protocols into layers. 

Figure 1.1 shows the four protocol layers within a computer 
system. The lowest layer protocol controls the specific net-
work technology, whether it’s an Ethernet lan, a dial-up 
modem, a fiber optic link, or any other technology. One of 
the Internet’s greatest strengths is its ability to adapt to all 
types of network technology. Isolating the protocol for that 
technology within its own layer is one of the reasons for this 
flexibility; supporting a new network technology is simply a 
matter of implementing an appropriate low layer protocol. 

Transport Protocol (TCP)

Internet Protocol (IP)

Network Technology

Application

Communication System

 

Figure 1.1 �
Systems that communicate over

the Internet use several protocols.
Each protocol operates at its own
layer in a protocol stack, fulfilling

specific responsibilities. This figure
shows the four protocol layers

used in an HTTP exchange. HTTP
itself is the application.
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The protocol layer immediately above the network technol-
ogy is the Internet Protocol, or ip. And even though ip may 
not be as famous as other protocols on the Internet, it can 
easily justify its name as the Internet Protocol. Not every sys-
tem on the Internet uses the same network technology, and 
different systems rely on different transport and application 
protocols. Every system on the Internet, however, uses ip. 
The Internet Protocol’s main responsibility is taking individ-
ual packets of information and forwarding them to their des-
tination. Most communications between systems require the 
exchange of many packets, and ip takes responsibility for 
every one. 

The next protocol is the transport protocol. The Internet in 
general uses three different transport protocols, but Web 
communications in particular uses one: the Transmission 
Control Protocol (tcp). While ip has responsibility for mov-
ing packets from one system to another, tcp makes that in-
formation transfer reliable. It ensures that the packets arrive 
in the right order, that none get lost in transit, and that no 
errors appear. 

The final protocol layer is the application. This protocol ac-
tually does something meaningful with the information 
that’s exchanged, including organizing the exchange into 
conversations. The application protocol that most interests us 
here is, of course, http, but there are many other application 
protocols on the Internet. There are application protocols for 
exchanging electronic mail, for setting up telephone calls, for 
authorizing dialup sessions, and so on. Of course, as we 
noted earlier, http traffic is the bulk of traffic on today’s 
Internet. 

The internal protocol organization of a single system isn’t 
what’s important for communications. After all, it takes 
more than one system to have meaningful communications. 
Figure 1.2 expands the earlier figure by bringing a second 
system into the diagram. Now we can start to see the way 
communication actually takes place. The figure shows black 

The 7 Layer Stack? 

Many theoretical descriptions of 

network communications rely on 

the Open Systems 

Interconnection Reference Model. 

That model, developed by the 

International Standards 

Organization as a framework for 

protocol standards, defines seven 

protocol layers. The Internet’s 

developers, however, have never 

been a slave to abstract theory; 

instead, they’ve focused on 

making practical networks 

operate. In most cases, the four 

protocol layers of figure 1.1 are 

sufficient and appropriate. 
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arrows between the different protocol layers within a system. 
Those arrows represent direct interaction. The application 
protocol in one system interacts directly with the transport 
protocol. That protocol, in turn, interacts directly with ip, 
and ip interacts with the protocol controlling the network 
technology. The different systems can directly interact with 
each other only through the network technology. 

Figure 1.2 shows another form of interaction as well, how-
ever. The gray arrows represent a logical interaction, and, as 
the figure indicates, each protocol layer logically interacts 
with its peer in the distant system. So even though the appli-
cation in one system directly interacts only with tcp, the re-
sult of that interaction is a logical communication with the 
application in another system. In the case of http, the http 
implementation in one system (for example, a Web browser) 
is effectively communicating with the http implementation 
in another (a Web server, perhaps). 

To see this process in more detail, let’s look at how an http 
message makes its way from your Web browser to a Web 
server on the Internet. Figure 1.3 shows the first four steps in 

Transport Protocol (TCP)

Internet Protocol (IP)

Network Technology

Application

Communication System

Transport Protocol (TCP)

Internet Protocol (IP)

Network Technology

Application

Communication System

 

Figure 1.2 �
When two systems communicate,

their protocols interface directly with
other protocols within each individual

system. Effectively, however,
protocols at each layer communicate

with their peers in the other system.



Introduction 7 

 

the process. First the http process constructs the message it 
wants to send; then, in step 1, it hands that message to a tcp 
process. The tcp process adds tcp-specific information to 
the message, creating a tcp segment. This addition acts a lot 
like envelopes do for regular letters. Letters themselves carry 
the real information, but we enclose them in envelopes for 
the benefit of the postal service. The postal service uses the 
addressing information on envelopes to deliver mail, without 
caring about the letters’ contents. In step 2, the tcp process 
passes the segment to the ip process. The ip process builds 
on this segment by adding more information, in effect add-
ing another envelope. The result is an ip datagram that, in 
step 3, reaches the protocol implementation controlling the 
system’s network technology. Only in step 4, after still more 
information is added to the original message, does the in-
formation actually leave the computer system. It leaves in the 
form of a packet or frame. 

HTTP Message

HTTP MessageTCP

IP Datagram

TCP SegmentIP

TCP Segment

Application
(HTTP)

Transport
(TCP)

Internet
(IP)

Network
Technology

network packet/frame

IP Datagramnet.

1

2

3

4

Communication System (Web Browser)

 

� Figure 1.3 
When the HTTP application has a 
message to send, it hands that 
message to a lower layer protocol. The 
message continues down through the 
entire protocol stack until it leaves the 
system. As this figure shows, each 
protocol has its own name for the unit 
of data it sends and receives. TCP calls 
its units segments; IP calls them 
datagrams, and the network 
technology sends and receives 
packets or frames. 
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Figure 1.4 completes the example by showing what happens 
when the packet reaches the Web server. It may have trav-
eled through many other systems and across a variety of net-
work technologies to get there, but those intermediate steps 
aren’t important to the browser or the server. The process 
that figure 1.4 shows is really just the reverse of the first four 
steps. Each protocol layer accepts the message, processes it as 
needed, and passes the extracted information up to the next 
highest protocol. Eventually, in step 8, the original http 
message arrives at the Web server application. 

In this book we’ll mostly concern ourselves with application 
layer protocols—primarily http, though chapter 5 intro-
duces a few other related application protocols. Because 
http relies on tcp to carry its messages, however, we will 
occasionally discuss the interactions between http and tcp; 
those interactions can have a significant effect on http per-
formance, and they have led to the development of many 
important features in http. 

HTTP Message

HTTP MessageTCP

IP Datagram

TCP SegmentIP

TCP Segment

Application
(HTTP)

Transport
(TCP)

Internet
(IP)

Network
Technology

network packet/frame

IP Datagramnet.

8

7

6

5

Communication System (Web Server)

 

Figure 1.4 �
HTTP messages that arrive in a system

pass up through the protocol stack
until they reach the application layer.

Each protocol layer removes its own
specific information, as network

packets become IP datagrams and
then TCP segments. Ultimately, the

HTTP message arrives at the HTTP
application process.
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1.3 Uniform Resource Identifiers 

Most likely, you’re already familiar with Uniform Resource 
Locators, or urls. They are the addresses we use to name 
Web sites; http://www.waterscreek.com is an example. You 
might be a little surprised, though, when you see that http 
continually refers to Uniform Resource Identifiers, or uris. 
Actually, there isn’t really much difference between the two 
concepts. Technically, a url is just one type of a uri. After 
all, one way to identify an object is to describe its location. 
As a practical matter, though, the two terms are equivalent. 
This book generally uses uri because that’s the term in the 
http specifications. If, whenever you see “uri,” you mentally 
translate it as “url,” you won’t suffer any ill effects. 

In any case, a uri can actually contain quite a lot of informa-
tion, and a thorough understanding of the uri structure is 
helpful in appreciating some aspects of http. Figure 1.5 
shows a sample uri with nearly all the possible elements. 
(Entering this uri in a Web browser actually worked when 
this book was written; of course, there’s no guarantee that 
will still be the case after publication.) Table 1.1 lists the uri’s 
components, along with a description of each one’s use. 

http://guest:secret@www.ietf.org:80/html.charters/wg-dir.html?sess=1#Applications_Area

http

http://guest:secret@www.ietf.or g:80

http://guest:secret@www.ietf.org:80 /html.charters

http://guest:secret@www.ietf.org:80/html.charters/ wg-dir.html

http://guest

http://guest:secret@www.ietf.org:80/html.charters/wg-dir.html?sess=1 #Applications_Area

protocol

username

port

path

http://guest:secret

http://guest:secret@www.ietf.org

password

host

file

fragment

query http://guest:secret@www.ietf.org:80/html.charters/wg-dir.html? sess=1

 

� Figure 1.5 
A Uniform Resource Identifier (URI) 
includes many individual 
components. 

http://www.waterscreek.com
http://guest:secret@www.ietf.org:80/html.charters/wg-dir.html?sess=1#Applications_Area
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Table 1.1 Components of a Uniform Resource Identifier 

Component Use 

protocol Identifies the application protocol needed to access the 

resource, in this case HTTP. 

username If the protocol supports the concept of user names, this 

provides a user name that has access to the resource; 

the example has a user name “guest.” 

password The password associated with the user name,  “secret” in 

the example. 

host The communication system that has the resource; for 

HTTP this is the Web server, www.ietf.org in the exam-

ple. 

port The TCP port that the application protocols should use 

to access the resource; many protocols have an implied 

TCP port (for HTTP that port is 80), but it can be over-

ridden here if necessary. 

path The path through a hierarchical organization under 

which the resource is located, often a file system’s direc-

tory structure or equivalent. 

file The resource itself. 

query Additional information about the resource or the client.

fragment A particular location within a resource. 

1.4 Organization of This Book 

The rest of this book consists of four chapters and two ap-
pendices. The next chapter, chapter 2, begins our look at the 
Hypertext Transfer Protocol. That chapter describes the op-
eration of the protocol, focusing on what http does without 
worrying too much about the protocol’s internal details. We 
won’t ignore those internal details, however. They are the 
subjects of chapter 3, which looks in detail at the structure of 
http messages. The following two chapters consider two 
key aspects of any practical use of http, security and per-
formance. Chapter 4 looks in depth at securing http com-
munications using both the facilities of http itself as well as 
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various additional protocols. Chapter 5 provides an overview 
of the many additional protocols and technologies that can 
improve http performance, particularly load balancing and 
caching. This book focuses on the latest version of http, 
version 1.1. In appendix a, however, we look at the relation-
ship between version 1.1 and earlier http versions; we’ll also 
consider how well common implementations support http 
version 1.1. The final appendix ties together many of the as-
pects of http covered throughout the book. Instead of de-
scribing and explaining the technology, however, it looks at 
how to apply the technology to an important and practical 
problem, building bullet-proof Web sites. The book closes 
with an annotated list of references, a glossary, and an index. 
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CHAPTER 2 
 

HTTP Operation —  
How Clients & Servers Use HTTP 
 

This chapter explores what http allows communicating 
systems to do, and how those systems go about doing it. The 
first section of this chapter introduces a concept fundamental 
to http’s operation—the distinction between clients and 
servers. The following three sections divide http’s functions 
into three types, based on how Web systems use them: 
Actions that users initiate, functions that clients like Web 
browsers invoke that are often transparent to users, and 
operations that take place deep in the network. The chapter 
concludes with an explanation of an important and often 
controversial http feature, state management through 
cookies. 

2.1 Clients and Servers 

Like many communication protocols, http makes a key dis-
tinction between the two communicating parties. In any 
http exchange, one system assumes the role of a client while 
the other is a server. This difference is very important, as 
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http requires clients and servers to follow very different 
rules and procedures. In a simple Web session, the Web 
browsing pc is an http client, while the system hosting the 
Web site acts as an http server. Even though these two sys-
tems both communicate using http, they obviously have 
vastly different responsibilities in that communication. As 
we’ll see in this section, the client, who always initiates http 
communications, controls several important characteristics of 
the session, including the underlying tcp connection, persis-
tence, and pipelining. 

2.1.1 Initiating Communication 

The most obvious difference between http clients and serv-
ers is responsibility for initiating communication. Only a 
client can do that. A server may have a lot of information it 
can provide and many functions it can perform, but it does 
something only when asked to do so by a client. An http 
client acts, and an http server reacts. 

Figure 2.1 illustrates a typical exchange. The Web browser, in 
its role of client, sends a request to a Web server. The server 
then returns a response to that client. A client may take fur-
ther action based on the server’s response, but http consid-
ers that action to be an entirely new exchange. The new 
exchange, like every http exchange, begins with a client’s 
request. 

Web Browser Web Server

Internet

Client Server

1 request

2 response  

Figure 2.1 �
The client begins a communications
exchange by sending a request to a

server. The server simply responds to
client requests. It does not initiate

communications on its own.
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2.1.2 Connections 

Like any application protocol that uses tcp, http requires a 
tcp connection. Because the http client is responsible for 
initiating http communications, the client is also responsi-
ble for initiating the process that creates the tcp connection. 
As figure 2.2 shows, this process requires the exchange of 
three tcp messages. The tcp messages are shown in gray 
text. 

After the initial tcp exchange, the client can send its http 
request. That request and the server’s response are in black 
text. The figure also shows the messages required to close a 
tcp connection. The server initiates this exchange because it 
knows when it has fulfilled the client’s request.  

2.1.3 Persistence 

The first versions of http required clients to establish a 
separate tcp connection with each request. For simple Web 
pages, this requirement did not present much of a problem. 
As Web sites grew more complex and graphic, however, tcp 
connection establishment began to have a noticeable effect 

4 HTTP Request

7 TCP FIN, ACK

6TCP FIN

5HTTP Response

3 TCP ACK

1 TCP SYN

Client Server

2TCP SYN, ACK

 

TCP Connections 

Figure 2.2 highlights key 

characteristics of TCP messages. 

The first message that the client 

sends has a SYN, for “synchronize,” 

flag. The SYN indicates that the 

client wishes to establish a 

connection. The server responds 

by setting the SYN and ACK (for 

“acknowledge”) flags, indicating 

its willingness to accept the 

connection. The client completes 

the connection establishment by 

sending a TCP message with only 

the ACK flag. These three 

messages are usually called the 

“three-way handshake.” Closing 

the connection requires only two 

messages. The first has the FIN (for 

“finished”) flag, and the second 

has both the FIN and ACK flags 

set. 

� Figure 2.2 
Before systems can exchange HTTP 
messages, they must establish a TCP 
connection. Steps 1, 2, and 3 in this 
example show the connection 
establishment. Once the TCP 
connection is available, the client 
sends the server an HTTP request. The 
final two steps, 6 and 7, show the 
closing of the TCP connection. 
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on Web performance. That’s because complex Web pages 
consist of many separate objects, and the client must issue a 
separate http request to retrieve each of those objects. The 
Web page of figure 2.3, for example, contains over 20 objects 
(the page itself, plus the individual graphic elements). With 
early versions of http, Web browsers would have to estab-
lish more than 20 separate connections before they could 
display the page. 

Version 1.1 of the http protocol eliminates the problem of 
multiple tcp connections with a feature known as persistence. 
(Although persistence was introduced in http version 1.0 
not all systems could support it; with version 1.1 it is the de-
fault behavior.) Persistence allows a client to continue to use 
an existing tcp connection after its initial request has been 
fulfilled. The client simply issues a new request on the same 
connection. Figure 2.4 shows this behavior in operation. 

 

Figure 2.3 �
Complex Web pages such as this one
contain many objects, each of which

requires its own HTTP message
exchange to retrieve. In this example,

the main page is one object, and each
individual graphic element is a

separate object. Altogether, a client
must issue 20 separate HTTP requests

before it can display the page.
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Persistence requires cooperation from both the client and the 
server. The client, obviously, must make the decision to use a 
connection persistently. It can do so, however, only if the 
server allows it. The server must not close the tcp connec-
tion after fulfilling the client’s initial request. 

2.1.4 Pipelining 

Persistence allows another http feature that improves per-
formance—pipelining. With pipelining, a client does not 
have to wait for a response to one request before issuing a 
new request on the connection. It can follow the first request 
immediately with a second request. Figure 2.5 shows how a 
client can use pipelining to send requests without waiting for 
responses. 

Client Server
4 HTTP Request

9 TCP FIN, ACK

8TCP FIN

7HTTP Response

3 TCP ACK

1 TCP SYN

2TCP SYN, ACK

5HTTP Response

6 HTTP Request

 

� Figure 2.4 
With persistent connections, a client 
can issue many HTTP requests over a 
single TCP connection. The first 
request is in step 4, which the server 
answers in step 5. In step 6 the client 
continues by sending the server 
another request on the same TCP 
connection. The server responds to 
this request in step 7 and then closes 
the TCP connection. 
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The graph in figure 2.6 compares the performance of 
pipelining, persistence, and single, serial connections. The 
figure shows the time it takes to display a Web page 
consisting of a number of objects. The graph assumes that a 
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Client Server

9 TCP FIN, ACK

8TCP FIN

3 TCP ACK

1 TCP SYN

2TCP SYN, ACK

4 HTTP Request 1

5 HTTP Request 2

7HTTP Response 2

6HTTP Response 1

 

Figure 2.6 �
Both persistence and pipelining

can offer significant improvements
in HTTP performance, especially

for complex Web pages with many
objects. As the graph shows, a

Web page with 20 objects (not
atypical) can take about 4 seconds

when the client uses serial
connections. Persistence and

pipelining together can reduce this
time to less than 1 second.

Figure 2.5 �
Pipelining lets an HTTP client issue

new requests without waiting for
responses from its previous

messages. In the figure, the client
sends its first request in step 4. It
immediately follows that with a

second request in step 5. The client
does not wait for the server’s

response, which arrives in step 6.
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number of objects. The graph assumes that a 50 ms delay 
separates the browser and server, and that the browser con-
nects using a 56 Kbit/s dial-up modem. As the figure indi-
cates, the enhancements http 1.1 introduces can make a 
significant difference in performance. 

2.2 User Operations 

The http protocol defines four basic operations—GET, POST, 
PUT, and DELETE. We consider these to be user operations 
because, at least in the context of Web browsing, they are 
each the direct result of user actions. As we’ll see in later 
sections, user actions may cause other http exchanges, and 
it doesn’t take an end user to initiate one of these. Still, the 
four operations of this section remain the most basic http 
operations. 

2.2.1 Web Page Retrieval – GET 

The simplest http operation of all is GET. It is how a client 
retrieves an object from the server. On the Web, browsers 
request a page from a Web server with a GET. For example, 
clicking on the link in the middle of figure 2.7 will force the 
browser to issue a GET request to the server asking for the 
new Web page to display. 

As figure 2.8 shows, GET is a simple two-message exchange. 
The client initiates it by sending a GET message to the server. 
The message identifies the object the client is requesting 
with a Uniform Resource Identifier (uri). 

If the server can return the requested object, it does so in its 
response. As the figure shows, the server indicates success 
with an appropriate status; 200 OK is the status code for a 
successful response. Along with the status code, the server 
includes the object itself in its response. If the server cannot 
return the requested object (or chooses not to), then it can 
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return any number of other status codes. Section 3.3 details 
all of the status codes http defines. 

2.2.2 Web Forms – POST 

Although Web browsing began mostly as a way to view 
pages of information, it soon grew to encompass two-way 
interaction. While GET lets a server send information to a 

 

Client Server

2
200 OK
+ Data

1 GET URI

 

Figure 2.7 �
Following a simple link on a Web

page causes the browser to send a
GET request for the new page to

the server. In this example, clicking
on the “… Computers” link will

cause the browser to issue a GET
request for the new page.

Figure 2.8 �
A server responds to a GET request by

returning the requested resource,
often a new Web page. The new page

is the data in the response.
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client, the POST operation provides a way for clients to send 
information to servers. Web browsers most commonly use 
POST operations to send forms to Web servers. Figure 2.9 
shows an example of such a form. It is a Web page that al-
lows users to search for Internet standards. When a user 
clicks on the “Search Database” button, the browser sends a 
POST request to the server; the request includes the informa-
tion the user has provided in the form. 

 

Client Server

2
200 OK
+ Data

1
POST URI

+ Data

 

� Figure 2.9 
Submitting a Web form often has the 
browser send a POST request to the 
server. The POST message includes 
the form’s data. In this example the 
POST data will include the search term
(“HTTP”), the scope (All Fields), the 
results per page (25), and the link 
method (FTP). 

� Figure 2.10 
A server responds to a POST request 
by returning new information such as 
search results. This information is 
carried as data in the response. 
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As figure 2.10 shows, the POST operation is nearly as simple 
as GET. The client sends a POST message and includes the 
information it wishes to send to the server. Like the GET 
message, part of the POST message is a Uniform Resource 
Identifier (uri). In this case, the uri identifies the object on 
the server that can process the included information. On 
Web servers, this uri is frequently a program or a script. 

Also as with the GET operation, a server can return informa-
tion itself as part of the response. For Web browsing, this 
information is typically a new Web page to display, often a 
page acknowledging the user’s input; in the case of a search 
form, the new Web page often shows the search results. 

2.2.3 File Upload – PUT 

The PUT operation also provides a way for clients to send 
information to servers. It is significantly different from the 
POST operation, even though, as figure 2.11 shows, the two 
look very similar. As with a POST, the client sends a method, 
a uri, and data. The server returns a status code and, option-
ally, data. 

The difference between POST and PUT is in how the server 
interprets the Uniform Resource Identifier. With a POST, the 
uri identifies an object on the server that can process the 
included data. With a PUT, on the other hand, the uri identi-
fies an object in which the server should place the data. 
While a POST uri generally indicates a program or script, the 
PUT uri is usually the path and name for a file. Figure 2.12 
shows an example of the PUT operation in action. On this 

Client Server
1

PUT URI
+ Data

2
200 OK
+ Data

 

Figure 2.11 �
Clients can use the PUT request to

send a new object to a server. The URI
that’s part of the request tells the

server where to put the object.
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page the user has identified a local file. By clicking on the 
Upload button, the user asks the browser to send a PUT re-
quest to the server. 

2.2.4 File Deletion – DELETE 

With GET and PUT operations, http becomes a serviceable 
protocol for simple file transfers. The DELETE operation 
completes this function by giving clients a way to delete ob-
jects from servers. The message exchange contains no sur-
prises. As figure 2.13 shows, the client sends a DELETE 
message along with the uri of the object the server should 
remove. The server responds with a status code and, option-
ally, more data for the client. 

 

� Figure 2.12 
The PUT request may be used to 
upload a file to a server. In this 
example the user wants to store the 
indicated file on the server. 
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2.3 Behind the Scenes 

The basic http operations generally occur as a direct result 
of end-user actions. Those four operations are not the only 
ones the protocol defines, however. Three additional opera-
tions, OPTIONS, HEAD, and TRACE, frequently take place be-
hind the scenes. Clients use them to communicate with 
servers not so much to perform user actions but to prepare 
for or diagnose problems with the basic operations. 

Although this section does not discuss it further, the http 
specification also reserves the name for another operation, 
CONNECT. The standard does not define how CONNECT works, 
except to indicate that it is intended to support tunneling. 
(See section 2.4.3.) Future extensions to http may define 
CONNECT in more detail.  

2.3.1 Capabilities – OPTIONS 

Clients can use an OPTIONS message to discover what capa-
bilities a server supports. The exchange is the standard re-
quest and response, as figure 2.14 illustrates. If the client 
includes a uri, the server responds with the options relevant 
to that object. If the client sends an asterisk (*) as the uri, 
the server returns the general options that apply to all objects 
it maintains. 

A client might use the OPTIONS message to determine the 
version of http that the server supports or, in the case of a 
specific uri, which encoding methods the server can provide 
for the object. Such information would let the client adjust 

Client Server
1 DELETE URI

2
200 OK
+ Data

 

Figure 2.13 �
The DELETE operation lets a client

remove an object from a server. The
URI identifies the object to delete.
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how it interacts with the server or how it actually requests a 
specific object.  

2.3.2 Status – HEAD 

The HEAD operation is just like a GET operation, except that 
the server does not return the actual object requested. As 
figure 2.15 shows, the server returns a status code but no data. 
(HEAD is short for “header,” as the server returns only message 
headers in response.) Clients can use a HEAD message when 
they want to verify that an object exists, but they don’t need 
to actually retrieve the object. Programs that verify links in 
Web pages, for example, can use the HEAD message to ensure 
that a link refers to a valid object without consuming the 
network bandwidth and server resources that a full retrieval 
would require. Cache servers can also use the HEAD operation; 
it gives them a way to see if an object has changed without 
actually retrieving the full object. 

2.3.3 Path – TRACE 

The TRACE message gives clients a way to check the network 
path to a server. When a server receives a TRACE, it responds 

Client Server
1 OPTIONS URI

2
200 OK +
Options

 

Client Server
1 HEAD URI

2200 OK

 

� Figure 2.15 
The HEAD request mimics a GET 
operation, except that the server does 
not actually return the requested 
object, only HTTP headers. 

� Figure 2.14 
Clients can use an OPTIONS request to 
ask about a particular object or about 
the server itself. The server returns the 
options data in its response. 



26 HTTP Essentials 

 

simply by copying the TRACE message itself into the data for 
the response. Figure 2.16 shows the simplest case. 

TRACE messages are more useful when multiple servers are 
involved in responding to a request. An intermediate server, 
for example, may accept requests from clients but turn 
around and forward those requests onto additional servers. 
(Proxies and cache servers, described in the next section, are 
examples of such intermediate servers.)  When an interme-
diate server is involved, TRACE works as in figure 2.17. The 
intermediate server modifies the request by inserting a Via 
option in the message. This Via option is part of the message 
that arrives at the destination server, and it is copied into the 
data of the server’s response. When the client receives the 
response, it can see the Via option in the data and identify 
any intermediate servers in the path. Section 3.2.34 describes 
this process in more detail. 

2.4 Cooperating Servers 

With the exception of the TRACE message, this chapter has so 
far focused on the communication between a single client 

Client Server
1 TRACE

2
200 OK +
Message

 

Client
1 TRACE

4
200 OK +
Message

Ultimate
Server2

TRACE
+ Via

3
200 OK +
Message

Intermediate
Server

 

Figure 2.16 �
Servers respond to TRACE requests by

echoing the request in their reply.

Figure 2.17 �
The TRACE request lets clients

discover the path their messages
follow through a network of

intermediate servers.
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and a single server. The http protocol defines more complex 
interactions, however, that frequently involve multiple servers 
cooperating on a client’s behalf. In this section, we’ll look at 
the different ways that multiple servers may be involved in a 
communication exchange. 

2.4.1 Virtual Hosts 

Of all the enhancements that http version 1.1 adds to ver-
sion 1.0, one of the smallest is direct support for virtual hosts. 
But although the protocol change is small, this feature is a 
major benefit for the World Wide Web. Virtual host support 
addresses a key element of the Web’s architecture that the 
designers of version 1.0 did not anticipate—Web hosting 
providers. 

The popularity of the Internet has created a tremendous de-
mand for Web sites, as organizations ranging from corpora-
tions to individuals (and even pets!) establish a presence on 
the Web. In many cases, though, it is impractical or ineffi-
cient for the organization itself to own and operate the serv-
ers and network infrastructure a Web site requires. To meet 
this demand, traditional Internet Service Providers, tele-
communications carriers, and specialized service providers 
can host Web sites on behalf of other organizations. A sig-
nificant majority of sites on the Internet are modest and re-
quire little resources from the systems on which they run. 
Because they don’t require a dedicated server, for example, 
most Web hosting providers actually run many separate Web 
sites on a single server, as figure 2.18 illustrates. 

The problem facing a Web server hosting multiple Web sites 
is simply stated: When a client requests a Web page, how 
does the server know which site the client is attempting to 
access? Consider a client request for the Web page corre-
sponding to http://www.company1.com/news.html. The cli-
ent first resolves the host part, www.company1.com, to an ip 
address. Then, as figure 2.19 shows, it establishes a tcp con-
nection and sends the http command GET news.html to 
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that address. Note, though, that the Web server does not 
participate in the dns resolution, so it doesn’t know which 
host the client intends to contact. The Web server has no 
way of knowing whether “news.html” refers to com-
pany1.com or company2.com. 

Prior to http 1.1, Web hosting providers had only two ways 
to solve this problem. They could require the Web sites to 
use unique uris for all their pages. So if company1.com had a 
page named “news.html” on its site, company2.com could not 
use that same name within its pages. In practice, Web host-
ing providers implemented this solution by requiring a site 
identifier in all path names. For example, instead of the 
straightforward uri “http://www.company1.com/news.html,” 
the company1.com Web site might use the more complicated 

www.company1.com

Internet

Web Browser Physical
Web

Server
www.company2.com

Domain
Name

System

1Query
www.company1.com

2 IP Address

3 GET /news.html

www.company1.com

Internet

Web Browser Physical
Web

Server
www.company2.com

Virtual Hosts

 

Figure 2.19 �
Virtual hosts can make it difficult for
the Web server to determine which

Web site the client is trying to
access. In this case the physical Web

server has no idea which Web
address the client requested

because it did not participate in the
DNS exchange that mapped the

host name to its IP address.

Figure 2.18 �
Virtual hosting lets many Web

addresses share the same Web server.
This configuration is typical in ISPs
that provide Web hosting for small

businesses and individuals.
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“http://www.company1.com/company1.com/news.html.”  As 
an alternative, Web hosting providers could assign separate 
ip addresses to each site on their servers. The servers then 
determine which site a client has requested by examining the 
ip address to which the client connects. Servers end up with 
multiple ip addresses, and ip addresses are scarce resources. 

With version 1.1, http addresses the problem of virtual hosts 
with a simple addition to the client’s request. That addition 
is the Host header, in which the client must place the host 
name of the site it is requesting. As figure 2.20 shows, the 
server can easily determine the site to which a request ap-
plies, and it can return the appropriate resource. 

2.4.2 Redirection 

While virtual host support allows a single server to support 
multiple Web sites easily, redirection offers a way to support 
a single site to use multiple servers. Redirection lets a server 
redirect a client to another uri for an object. Figure 2.21 
shows the process. First the client requests an object from 
the first Web server. Instead of returning the requested ob-
ject, however, the server replies with a 301 Moved status 
code. The response also indicates a new uri for the object. 
The client recognizes this uri and, in step 3, reissues the re-
quest. This time the GET succeeds, and the second server re-
turns the actual object. 

www.company1.com

Internet

Web Browser Physical
Web

Server
www.company2.com

GET /news.html
Host: www.company1.com

 

� Figure 2.20 
The Host feature in HTTP version 1.1 
lets clients explicitly identify the Web 
site they are accessing, so the virtual 
hosting Web server can return the 
right content. 
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Redirection is essential to the very dynamic Web environ-
ment. It provides a convenient way to support revisions 
within a Web site, relocation of content, and even the change 
of a corporate identity. 

Note that the redirection does not have to specify a different 
host. Frequently, in fact, redirection is used to inform the 
client of a new path for the resource on the same host. Note 
also that there are other techniques for accomplishing the 
same effect. The server can, for example, answer the original 
request by providing a JavaScript object that automatically 
directs the client to a new location. 

2.4.3 Proxies, Gateways, and Tunnels 

Another way that http servers can cooperate with each 
other is by acting as proxies, gateways, or tunnels. In each of 
these roles, the server that the client first contacts relays the 
request to a new server and then relays the second server’s 
response back to the client. Figure 2.22 shows a proxy server 
in operation. 

In the figure, the client first sends its http request directly 
to the proxy server. That server, however, cannot (or chooses 
not to) respond to the client immediately. Instead, it re-
issues the request to a second server, which the figure labels 

Internet

Web Server
3

Web Server

GET

4

1

2

200 OK

301 Moved

GET

Web Browser

 

Figure 2.21 �
A server redirects a client to tell the
client that the object it requested is
located elsewhere. When, in step 2,

the client receives a 301 Moved
response, it looks for a new URI in the

response message and issues a new
GET request for that URI.
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the “origin server” (so called because it is the origin of the 
requested object). In the most basic case, the second GET has 
a uri identical to that of the first; it’s simply sent to a new 
server. That server treats the second GET as if it had come 
from a client and responds with the requested object. The 
proxy server then has the information the client originally 
requested, and it returns that object to the client in step 4. 

Although figure 2.22 shows a single proxy server, http al-
lows multiple proxies to participate in satisfying a request. 
The proxies form a chain as in figure 2.23, handing off the 
request from one to the other until the requested object can 
be found. The proxies then pass that object back to the client 
in the reverse direction.  As each server processes a request, it 
adds its own identity to the Via header in the request. By the 
time the request arrives at the ultimate final server, the Via 

Client proxy1 proxy2 origin

1 GET URI 2
GET URI
Via: proxy1

3
GET URI
Via: proxy1, proxy2

4 200 OK5
200 OK
Via: proxy2

6
200 OK
Via: proxy2, proxy1  

Origin Server

Internet

1

Proxy Server

GET

4 200 OK

2 GET

3 200 OK

Web Browser

 

� Figure 2.23 
Proxy servers create or update the Via 
option as they relay requests or 
responses. This option may make it 
easier to diagnose network problems.

� Figure 2.22 
A proxy server positions itself in 
between clients and servers. It 
forwards requests on behalf of clients 
and relays responses from the servers. 
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header will have captured the path taken by the request 
through the server chain. The response follows the same 
process, with each intermediate system inserting its identity 
in the Via header. (Note that figure 2.23 shows only a partial 
Via header; for complete details, see section 3.2.50.) 

Proxy servers perform several important functions for http 
communications. The most common is in support of cach-
ing, which section 2.4.4 discusses in more detail. Other uses 
include enforcing policy for an organization. A corporation 
can direct all its internal clients to use a proxy server to ac-
cess the public Internet, allowing the proxy server to filter 
that Internet access appropriately. Frequently this type of 
operation is part of a firewall. Proxy servers have also been 
used to provide anonymity to Web browsers, preventing 
servers from discovering identifying information about actual 
clients. 

If, as is common, a proxy serves multiple origin servers, then 
the client must usually include the absolute uri in its re-
quests. Without the full uri, the proxy may not be able to 
tell which server the client wishes to contact. Because this 
behavior is unusual for many clients, and because clients 
must know to send their requests to proxy servers rather than 
the ultimate destination, they must often be explicitly con-
figured to use a proxy server. Chapter 5 describes some of the 
mechanisms that system administrators can use to automati-
cally configure proxy servers for their users. 

Gateways and tunnels operate very much like proxy servers; 
however, there are subtle differences. Gateways act as an 
endpoint to a server chain, but they still rely on other servers 
to provide all or part of the requested object. In many cases, 
gateways use a protocol other than http to access the object. 
In figure 2.24, for example, the gateway uses the Structured 
Query Language to retrieve information from a database 
management system. 
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While gateways act as a definite endpoint to a server chain, 
tunnels are exactly the opposite. As figure 2.25 indicates, they 
are relatively transparent to the original client; the client may 
not even be aware that a tunnel exists. Tunnels do provide 
some service, however. In the example of figure 2.25, the tun-
nel establishes a secure connection to the actual server, add-
ing security to the communication between client and server. 
Note that although http 1.1 defines the operation of tunnels 
in general terms, as of this writing few practical implementa-
tions are available. 

2.4.4 Cache Servers 

Cache servers are a specialized type of proxy servers whose 
main function is to improve Web performance. They do that 
by remembering the objects requested by clients and, if the 
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1 GET

2 200 OK
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DBMS

3

SQL result

Client Gateway

Internet

1 HTTP request
2 SQL query

4 HTTP response  

� Figure 2.25 
A tunnel allows a client to 
communicate directly with a distant 
server. In this example the tunnel 
creates a secure path for the client’s 
request and the server’s response. 

� Figure 2.24 
A gateway accepts HTTP requests 
and translates them to a different 
format such as SQL. The gateway 
also ensures that any reply is a 
proper HTTP response. 
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same object is requested again (either by the same client or a 
different client), returning the object that they’ve remem-
bered instead of re-requesting it from the origin server. Fig-
ures 2.26 and 2.27 show the process. 

The first figure shows standard proxy operation. The key to a 
cache server’s operation is that it remembers the requested 
object, generally by saving a copy on its local disk or in its 
memory. 

Figure 2.27 shows the payoff for the cache server. In this fig-
ure, a new client requests the same object as in figure 2.26. 
This time, however, the cache server does not need to con-
tact the origin server. It simply returns the saved object from 
its local disk or memory. 

Cache servers improve Web performance at both the client 
and the origin server. For the client, they shorten the dis-
tance to the object the client needs. As figures 2.26 and 2.27 
illustrate, a cache server may be located on the same local 
area network as its clients. Local networks typically have 
higher bandwidth than wide area Internet connections, and 
the transmission delay across a local network is generally 
much less. 

Cache servers also improve performance by reducing the 
load on the origin server. When a cache server returns an 
object to a client, that’s one less request to bother the origin 

Origin Server

Internet

1

Cache Server

GET

4

200 OK

2 GET

3 200 OK

Web Browser

 

Figure 2.26 �
Cache servers are proxy servers that

relay requests and responses. In
addition, they keep a local copy of any

responses they receive.
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server. Fewer requests mean less processing and memory re-
sources that the origin server requires, as well as less band-
width it needs for its connection to the Internet. 

One of the more complicated issues facing a cache server is 
knowing how long the objects it has stored in its cache re-
main valid. Given the dynamic nature of the Web, an object 
that an origin server returns at one moment may be super-
ceded by a new object in the next moment. When that hap-
pens, the cache server must not return the object from its 
cache, but, rather, it must re-query the origin server to re-
trieve the new object. 

As we’ll see in section 3.2, http 1.1 includes several headers 
just to support cache servers. Those headers tell cache servers 
whether an object can be cached and, if so, how long it can 
be safely stored. Section 5.2 examines cache server operation 
in more detail, focusing on those aspects outside the scope of 
the http specification itself. 

2.4.5 Counting and Limiting Page Views 

Whenever an intermediate cache server processes client re-
quests, the origin server can lose some control over its inter-
actions with clients. In many ways that is a benefit, as cache 
servers reduce the load on origin servers and can significantly 
improve their performance. There are some disadvantages, 

Web Browser

Origin Server

Internet

5

Cache Server

GET

6 200 OK

Web Browser

 

� Figure 2.27 
When a new client asks for the same 
object, the cache server returns its 
local copy instead of sending another 
request all the way to the origin 
server. This speeds up the response, 
and it saves bandwidth for the 
Internet connection. 
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though. For some Web sites, having a cache deliver pages to 
clients is a significant problem because it means the origin 
server does not know how often users view its content. 
When the site derives revenue from advertising, being able 
to count the number of site users may be critical to maximiz-
ing that revenue. As a consequence, many Web servers delib-
erately designate their content as non-cachable, even when 
caching is otherwise both possible and desirable. The devel-
opers of http have recognized this problem and introduced 
a technique that allows caching and yet still gives origin 
servers a way to count and, if desired, limit page views by the 
cache server clients. This technique is an extension to the 
base http specification; it is documented in rfc 2777. 

The process begins when a proxy inserts a Meter header into 
a request message as it forwards the message on. (See section 
3.2.35 for details of this header.) Steps 2 and 3 of figure 2.28 
show this process. By inserting the header here, the proxy 

Client 1 Proxy A Proxy B Origin Server

1 GET URI 2
GET URI
Meter:

Proxy C

Client 2

3
GET URI
Meter:

4
200 OK
Meter: do-report5

200 OK
Meter: do-report

6 200 OK

 

Figure 2.28 �
Proxies that support metering

insert the Meter header in requests
passing through them. Servers ask
for metering on a particular object

by including the Meter header in
their replies.
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indicates its willingness to report on and limit the number of 
times it returns the resulting response from its cache. 

The origin server responds to this invitation by including a 
Meter header in its response. This header tells the proxies 
how to handle the object with respect to reporting and usage 
limitations. 

Later, when another client requests the same object, the 
proxies that have a cached copy will need to validate that 
copy with the origin server. When they do, as figure 2.29 
shows, they update the Meter header in their requests. This 
meter information is a report of the number of times the 
cached entry has been provided to clients. 

2.5 Cookies and State Maintenance 

The http protocol normally operates as if each client 
request is independent of all others. The server responds to 
any request strictly on the merits of that request, without 

Client 1 Proxy A Proxy B Origin Server

Proxy C

9
HEAD URI
Meter: count=N/M

7 GET URI

8 GET URI

Client 2  

� Figure 2.29 
Proxies that are metering an object 
report their results when they send 
the origin server a new request 
relating to the object. In this 
example proxy B issues a HEAD 
request to make sure its cached 
copy is still valid. It includes a Meter 
header in the request. 



38 HTTP Essentials 

 

reference to other requests from the client (or, for that 
matter, any other client). This type of operation is known as 
stateless because the server does not have to keep track of the 
state of its clients. 

Because maintaining state requires server resources (memory, 
processing power, etc.), stateless operation is usually desir-
able. In some applications, however, the server needs to keep 
some state information about each of its clients. Users that 
successfully log in to a Web site, for example, shouldn’t have 
to log in again every time they view a different page on that 
site. A server can avoid this inconvenience by tracking the 
state of the client. The first time the client requests a page 
from the site, the server requires the user to log in. As the 
user continues to browse the site and make additional http 
requests, however, the server remembers the previously suc-
cessful login and refrains from requesting additional logins. 

2.5.1 Cookies 

State maintenance requires one critical capability: Servers 
must be able to associate one http request with another. 
The server must be able to tell, for example, that the user 
requesting a new page really is the same user that has already 
logged in, not a different user that has not been authorized. 
The mechanism that http defines for state maintenance is 

Client Server

1 HTTP Request

4HTTP Response

2
HTTP Response

+ Cookie

3
HTTP Request

+ Cookie

 

Figure 2.30 �
Servers can return state

management cookies in their
responses. Clients, if they wish,

include those cookies in subsequent
requests to the same server.
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known as a cookie. A server creates cookies when it wants to 
track the state of a client, and it returns those cookies to the 
client in its response. Once the client receives a cookie, it can 
include the cookie in subsequent requests to the same server, 
as figure 2.30 indicates. The client can continue to include 
the cookie in its requests until either (a) the cookie expires or 
(b) the server directs the client to discontinue using the 
cookie. 

Not all Web users like the fact that http supports cookies. 
Many users view state maintenance as an invasion of their 
privacy. State maintenance, by its very definition, does allow 
Web sites to track the browsing behavior of its users. Used 
appropriately, however, state maintenance would not likely 
raise privacy concerns with most users. Users that click on 
the “checkout” button of an online shopping cart, for exam-
ple, probably appreciate that the Web site can remember the 
items they’ve added to that shopping cart. In fact, most users 
would expect a Web site to keep track of their order; a func-
tion that cookies make much easier. Problems arise when 
Web sites use cookies to track users in ways that they do not 
expect. For example, an online advertising agency may track 
a user as she travels from an online stock broker, to a sport-
ing goods site, and then to an online community, steadily 
building a profile of her in order to present her more tightly 
targeted advertisements. Without cookies, this type of track-
ing would not be practical. 

At first, it might seem that http’s rules governing the use of 
cookies would protect users from this type of tracking. After 
all, an http client can return a cookie only to the server that 
originally issued it. If the online broker sends the browser a 
cookie, how can the sporting goods site, which is on a differ-
ent server, retrieve that cookie from the user? The trick, in 
this case, is that cookie doesn’t belong to either server. 
Rather, it is owned by a third party ad server that has ar-
rangements with both the broker and sporting goods sites. 
Figure 2.31 shows the first step in the process, when the user 
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visits the online broker’s site. The Web page from the first 
site contains multiple objects. One of those objects is a ban-
ner ad that resides on an ad server operated by the ad agency. 
The user’s Web browser dutifully requests all the objects that 
make up the page, including the banner. The fact that the ad 
resides on a different http server is not a problem. The cli-
ent simply sends its GET request to the server indicated in the 
Web page. It is in the response to this GET request that the 
server inserts its cookie. 

Later, the user browses to the sporting goods site. As figure 
2.32 illustrates, the Web page for this site also includes a 
banner ad, and that ad also resides on the ad agency’s server. 

Web Site 1

Internet

Ad Server

Web Browser

new page with
new banner ad

Web Site 2

 

Web Site 1

Internet

Ad Server

Web Browser

Web page with
banner ad

 

Figure 2.32 �
A new Web site may also include

objects from an external server; the
external server can retrieve its cookies

when the client requests those
objects. In the figure Web site 2 also

includes an object from the ad server.
The client will request this object, and,

because it’s communicating with the
same server as before, it may return
the server’s cookies in that request.

Figure 2.31 �
A Web page may include objects from
multiple servers, and each server may

provide its own cookies when
returning its objects. In this example

the main page is from Web site 1, but
the page includes an object from the
ad server. The client will request this

object, and the ad server may include
cookies in its response.
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The Web browser dutifully sends a GET request to that server, 
and, because it is the same server that originally provided the 
cookie, it includes the cookie in that request. The ad agency 
now knows which sites the user has visited. Note, however, 
that the ad agency can track information only for sites with 
which it has a relationship. If the user visits another Web site 
that does not have an agreement with the ad agency, that 
Web site will have no banner ad pointing to the ad agency’s 
server. Without a banner ad and associated cookie exchange, 
the agency will remain unaware of the user’s visit to the site. 

 2.5.2 Cookie Attributes 

Cookies consist of the series of attributes listed in table 2.1. 
The server chooses values for the required attributes and, if it 
desires, for the optional attributes as well. 

 

Table 2.1 Cookie Attributes 

Attribute Status Notes 

NAME Required An arbitrary name for the cookie, assigned by 

the server. 

Comment Optional A comment that the server can add to the 

cookie; it is intended that clients will be able 

to inspect the comments for cookies they 

have received, in which case the comment 

can be used to explain how the server uses 

the cookie, possibly reassuring users that 

may have privacy concerns. 

CommentURL Optional A URL that the server can provide with a 

cookie; the URL may elaborate on how the 

server uses the cookie. 

Discard Optional Instructs the client to discard the cookie once 

the user finishes; in effect, this tells Web 

browsers not to store the cookie on the user’s 

disk drive. 
continues… 
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Table 2.1 Cookie Attributes (continued) 

Attribute Status Notes 

Domain Optional The domain (from the Domain Name System) 

for which the cookie is valid; a server may not 

specify a domain other than one to which 

itself belongs, but it may specify a domain 

more general than a single server. 

Max-Age Optional The lifetime of the cookie, in seconds. 

Path Optional The URLs on the server to which the cookie 

applies. 

Port Optional A list of TCP ports for which the cookie ap-

plies. 

Secure Optional Instructs the client to only return the cookie 

in subsequent requests if those requests are 

secure; it may be used for cookies that should 

not be exposed to eavesdroppers. Note, 

however, that HTTP does not specify what 

“secure” means in this context. 

Version Required The version of HTTP state maintenance to 

which the cookie conforms; the current ver-

sion is 1. 

2.5.3 Accepting Cookies 

When a client receives a cookie, it saves the attributes that 
make up the cookie. In addition, if the server has omitted 
any of the optional attributes, the client supplies default val-
ues. Table 2.2 lists the default values that clients apply to 
missing attributes. 

 

Table 2.2 Default Values for Cookie Attributes 

Attribute Default Value if Missing 

Discard Defer to the Max-Age attribute value for default. 

Domain The domain name of the server that supplied the 

cookie originally. 
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Table 2.2 continued 

Attribute Default Value if Missing 

Max-Age Keep the cookie only as long as the current user ses-

sion is active (e.g., do not store the cookie on the user’s 

hard disk). 

Path The URL for which the cookie was originally returned, 

up to, but not including, the file specified by that URL. 

Port The cookie applies to any ports. (Note that if the Port 

attribute is present in the cookie but has no value, then 

the client sets the value of the attribute to the port of 

its original request.) 

Secure The cookie may be returned with insecure requests. 

Note that a client is never required to accept a cookie. Users, 
for example, may configure their Web browsers to accept 
cookies or not, as figure 2.33 shows. An http server, there-
fore, cannot count on a cookie being accepted, even if the 
cookie is appropriately formatted. 

Even if a user is willing to accept cookies, the http specifi-
cation requires that the client reject cookies under certain 

 

� Figure 2.33 
Most browsers give users some 
control over cookies and state 
management. This dialog box shows 
several options that determine 
whether the browser will accept a 
cookie. Other browsers distinguish 
between persistent cookies (which 
are stored on the PC’s disk drive) 
and temporary cookies that the 
browser deletes as soon as the user 
exits the application. 
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circumstances. Rejected cookies are simply ignored by the 
client and, therefore, are never included in subsequent re-
quests. Table 2.3 lists the conditions under which a client 
must reject a server’s cookie. Note that the client considers 
these conditions after it has applied any default attribute val-
ues as outlined in table 2.2. 

Table 2.3 Rules for Rejecting Cookies 

Conditions Under Which a Client Rejects a Cookie 

• The value of the Path attribute is not a prefix of the URL in the 

client’s request. 

• The value for the Domain attribute does not have any dots within 

it (not just at the beginning), unless the value is “.local”. 

• The server that returned the cookie does not belong to the do-

main specified by the Domain attribute. 

• The host part of the Domain attribute, if present, contains a dot 

within it. 

• The port of the client’s request is not included in the Port attrib-

ute (unless the Port attribute is absent). 

 

Finally, when a client accepts a cookie, the new cookie super-
cedes any previously accepted cookies that have the same 
NAME, Domain, and Path attribute values. 

2.5.4 Returning Cookies 

Once a client has accepted a cookie and supplied appropriate 
default values, it determines when to return the cookie to a 
server in subsequent http requests. Table 2.4 outlines the 
rules under which a client includes a cookie in a request. 
Note that more than one cookie may meet the table’s criteria, 
in which case the client should include multiple cookies in 
its request. 
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Table 2.4 Rules for Returning Cookies 

Conditions Under Which a Client Returns a Cookie 

• The domain name for the new request must belong to the domain 

specified by the cookie’s Domain attribute. 

• The port for the new request must be included in the list of ports 

of the cookie’s Port attribute, unless the Port attribute was ab-

sent from the cookie (indicating all ports). 

• The path for the new request must match the cookie’s Path at-

tribute, or represent a child of the Path attribute. 

• The cookie must not have expired, as per its Max-Age attribute. 

When the client returns a cookie to a server, it includes the 
Domain, Path, and Port attributes if those attributes were 
present in the original cookie. It does not include those at-
tributes if they were absent from the original cookie. 
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CHAPTER 3 

HTTP Messages — 
Syntax of HTTP Communications 
 

Now that we’ve seen how the Hypertext Transfer Protocol 
operates, it’s time to look at its messages in detail. Unlike 
many other communication protocols, http messages con-
sist of (mostly) English text. Instead of worrying about bits 
and bytes in this chapter, we consider the words that the 
http specifications define and the rules for putting those 
words together. (Those readers whose native language is not 
English may take some small consolation in the fact that the 
words http defines are not likely to appear in many English 
dictionaries.) 

This chapter first looks at the overall structure of http mes-
sages. As we’ll see, an http message begins with either a 
request line or a status line, which may be followed by vari-
ous headers and a message body. After describing this overall 
structure in more detail, the chapter examines every http 
header field and every defined status code from all of the 
current http specifications. 
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3.1 The Structure of HTTP Messages 

As we saw in the previous chapter, http is a client/server 
protocol; clients issues requests, and servers respond to those 
requests. The http message structure mirrors that division. 
There is one format for http requests and another, slightly 
different, format for responses. The next two subsections 
consider each in turn. 

3.1.1 HTTP Requests 

Figure 3.1 shows the basic structure of http requests. Each 
request begins with a Request-Line. This line of text indi-
cates the method that the client is requesting, the resource to 
which the method applies, and the version of http that the 
client can support. The Request-Line may be followed by 
one or more message headers and a message body. A blank 
line follows the Request-Line and any message headers that 
are present. 

To make the figure more concrete, the text that follows 
shows the actual http message that Microsoft’s Internet 
Explorer sends when a user accesses the home page of the 
Financial Times (www.ft.com). The first line is the Request-
Line, and message headers make up the rest of the text. 

Message Headers
(optional)

Request-Line

Blank Line

Message Body
(optional)

General Headers

Request Headers

Entity Headers

 

Figure 3.1 �
An HTTP request begins with a
Request-Line and may include

headers and a message body. The
headers can describe general

communications, the specific request,
or the included message body.

Ending a Line 

As many computer users know, 

different operating systems have 

different conventions for 

indicating the end of a line of text. 

Most UNIX systems use the 

linefeed character (with an ASCII 

value of 10), while the Macintosh 

uses the return character (ASCII 

13). Not to be outdone, Windows 

systems mark the end of a line 

with the two-character sequence 

of a return followed by a linefeed.  

The HTTP specifications follow the 

same convention as Windows; 

they use the symbol CRLF to 

represent the two-character 

sequence. 
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GET / HTTP/1.1 
Accept: */* 
Accept-Language: en-us 
Accept-Encoding: gzip, deflate 
User-Agent: Mozilla/4.0  
    (compatible; MSIE 5.5; Windows NT 5.0) 
Host: www.ft.com 
Connection: Keep-Alive 
 

The http Request-Line contains, as figure 3.2 highlights, 
three separate items. They are a method, a uri, and an http 
version, each separated by one or more blank spaces. 

GET      /     HTTP/1.1

method

URI

version HTTP/1.1

GET

/

 

The specific method appears first in the Request-Line. In 
the preceding example the method is a GET, but as table 3.1 
indicates, http defines a total of eight different methods 
(each described in chapter 2). As the table also indicates, 
http servers are required to support only the GET and HEAD 
methods; if they support other http methods, however, that 
support must adhere to the rules of the http specifications. 
The http specifications also leave open the possibility that 
other methods may be added in the future. 

Table 3.1 HTTP Methods 

Method Server Support Use 

CONNECT Optional Asks server (usually a proxy) to estab-

lish a tunnel. 

DELETE Optional Asks server to delete the indicated 

resource. 

GET Required Asks server to return requested re-

source. 
continues… 

� Figure 3.2 
An HTTP Request-Line has a method, 
a uniform resource identifier (URI), 
and an HTTP version indicator. 

� The blank line here marks the end 
of the message; there’s no message 
body. 
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Table 3.1 HTTP Methods (continued) 

Method Server Support Use 

HEAD Required Asks server to reply as if it were going 

to return the requested resource, but 

not to include the resource itself in 

the response. 

OPTIONS Optional Asks server to indicate the options it 

supports for the indicated resource. 

POST Optional Asks server to pass the message body 

to the indicated resource. 

PUT Optional Asks server to accept the message 

body as the indicated resource. 

TRACE Optional Asks server simply to respond to the 

request. 

The next item in the Request-Line is the Request-uri. This 
item provides the uniform resource identifier for the affected 
resource. In the example, the Request-uri is /, indicating a 
request for the root resource. For requests that don’t apply to 
any specific resource (such as the TRACE request or, in some 
cases, the OPTIONS request), the client may use an asterisk as 
the Request-uri. 

The final item of the Request-Line is the http version. As 
the example shows, http version 1.1 includes the text 
HTTP/1.1 for this item. The first 1 is the major version num-
ber, while the second 1 is the minor version number. The mi-
nor version changes when the http specification changes 
significantly enough to affect communications behavior, but 
not so much that an older system cannot parse the messages. 
The major version number changes whenever the specifica-
tion changes so drastically that an older system will not be 
able to parse the new messages. In other words, an http ver-
sion 1.1 server will be able to interpret an http 1.2 message, 
but it won’t necessarily be able to respond; the same server, 
on the other hand, may not even be able to interpret an 
http 2.0 message. Note that the client includes the http 
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version in its request to indicate the version it is capable of 
supporting. It does not use the version to indicate which fea-
tures are actually employed in a given request. For example, a 
client that supports http 1.1 would use that version number 
on all its requests, even for requests that include only http 
1.0 features. 

After the Request-Line, an http request may include one or 
more lines of message headers. As figure 3.1 indicates, mes-
sage headers may be general headers, request headers, or en-
tity headers. The general headers apply to the http 
communications in general; the request headers apply to the 
specific request, and entity headers apply to the message 
body included in the request. The next section looks at each 
of these headers in more detail. 

An http request always includes a blank line after the Re-
quest-Line and any included headers. If the request includes 
a message body, that body follows the blank line. The blank 
line is important because it lets the server identify the end of 
the request, or, if a message body is present, the end of the 
headers for the request. Without the blank line, a server re-
ceiving a message could never be sure that additional mes-
sage headers weren’t still in transit. If a message body is 
present, the server can’t rely on a blank line to indicate the 
end of the message. Instead, however, it counts on the client 
to explicitly indicate the size of the message body with entity 
headers. By knowing the size of the message body, the server 
can find the overall end of the request. 

3.1.2 HTTP Responses 

As figure 3.3 indicates, http responses look a lot like http 
requests. The only significant difference is that responses 
begin with a status line rather than a Request-Line. 

The text below shows an actual http response, including the 
beginning Status-Line. Much like the Request-Line, a 
Status-Line contains three items separated by blank spaces, 
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which figure 3.4 also highlights. The line begins with the 
highest http version that the server supports. As with the 
client, this does not indicate that the response necessarily 
includes options defined by that version. An http 1.1 server 
that receives a request from an http 1.0 client, for example, 
may still indicate HTTP/1.1 in its Status-Line. That server, 
however, must be careful to include only http 1.0 options in 
its response. Otherwise it may be sending the client informa-
tion that the client cannot understand. 

HTTP/1.1 200 OK 
Date: Sun, 08 Oct 2000 18:46:12 GMT 
Server: Apache/1.3.6 (Unix) 
Keep-Alive: timeout=5, max=120 
Connection: Keep-Alive 
Content-Type: text/html 
 
<html>... 

Message Headers
(optional)

Status-Line

Blank Line

Message Body
(optional)

General Headers

Response Headers

Entity Headers

 

HTTP/1.1     200     OK

version

status code

reason OK

HTTP/1.1

200

 

Figure 3.3 �
An HTTP response begins with a

Status-Line and may include headers
and a message body. The headers can
describe the general communications,

the specific response, or the included
message body.

Figure 3.4 �
An HTTP Status-Line begins with an

HTTP version indicator and includes a
numerical status code and a textual

description of the response.

The blank line here marks the end of
message headers; the message body

follows. �
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The remaining two items on the Status-Line are the Status-
Code and the Reason-Phrase. The Status-Code is a three-
digit number that indicates the result of the request. The 
most common Status-Code is the 200 of the example. That 
value indicates that the client’s request succeeded. The first 
digit in the Status-Code identifies the type of result and 
gives a high-level indication of whether the request suc-
ceeded; additional digits provide more details. Table 3.2 lists 
the main categories of status code values, while section 3.3 
discusses all the http status codes in detail. 

Table 3.2 HTTP Status Code Categories 

Status Code Meaning 

100-199 Informational; the server received the request but a final 

result is not yet available. 

200-299 Success; the server was able to act on the request suc-

cessfully. 

300-399 Redirection; the client should redirect the request to a 

different server or resource. 

400-499 Client error; the request contained an error that pre-

vented the server from acting on it successfully. 

500-599 Server error; the server failed to act on a request even 

though the request appears to be valid. 

The Reason-Phrase that follows the Status-Code merely 
helps humans interpret the Status-Code value. Servers in-
clude it as a convenience to humans, but clients pay no 
attention to its contents (other than, if appropriate, 
displaying it to a human user). 

3.2 Header Fields 

As we saw previously, http requests and responses may both 
include one or more message headers. Message headers be-
gin with a field name and a colon (“:”). In some cases, the 
field name alone is sufficient for the header. Most of the 
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time, though, the header includes additional information. If 
present, this information follows the colon. 

A message header generally ends when the line ends, but if a 
client needs to continue a header beyond a single line; it can 
do so by beginning the continuation lines with one or more 
spaces or horizontal tabs (ascii character 8). The request ex-
ample from the previous section includes a continuation line 
for the User-Agent header; you can see it again highlighted 
in the following. 

GET / HTTP/1.1 
Accept: */* 
Accept-Language: en-us 
Accept-Encoding: gzip, deflate 
User-Agent: Mozilla/4.0  
    (compatible; MSIE 5.5; Windows NT 5.0) 
Host: www.ft.com 
Connection: Keep-Alive  
 

If a message header can contain of a series of field values, 
each separated by a comma, for example, then it is acceptable 
to include the same message header multiple times in the 
same message. Such a message is treated identically to a 
message that only includes the field once but with all field 
values. The following text is an alternate, but completely 
equivalent, version of the example request. Note that in this 
case the Accept-Encoding header appears twice. 

GET / HTTP/1.1 
Accept: */* 
Accept-Language: en-us 
Accept-Encoding: gzip 
Accept-Encoding: deflate 
User-Agent: Mozilla/4.0  
    (compatible; MSIE 5.5; Windows NT 5.0) 
Host: www.ft.com 
Connection: Keep-Alive  
 

Before diving into the individual header fields, table 3.3 pro-
vides a summary list of all message headers that the http 
specifications have so far defined. The table emphasizes that 

Continuation of the
 User-Agent Header �
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headers can apply to http in general, to a specific request or 
response, or to the message body (entity) included in the re-
quest or response. Although the specifications don’t strictly 
require it, http suggests that implementations include mes-
sage fields in that order: general headers, then request or re-
sponse headers, and finally entity headers. 

Table 3.3 HTTP Header Fields 

Header General Request Response Entity 

Accept  ●   

Accept-Charset  ●   

Accept-Encoding  ●   

Accept-Language  ●   

Accept-Ranges   ●  

Age   ●  

Allow    ● 

Authentication-Info   ●  

Authorization  ●   

Cache-Control ●    

Connection ●    

Content-Encoding    ● 

Content-Language    ● 

Content-Length    ● 

Content-Location    ● 

Content-MD5    ● 

Content-Range    ● 

Content-Type    ● 

Cookie  ●   

Cookie2  ●   

Date ●    

ETag   ●  

continues… 
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Table 3.3 HTTP Header Fields (continued) 

Header General Request Response Entity 

Expect  ●   

Expires    ● 

From  ●   

Host  ●   

If-Match  ●   

If-Modified-Since  ●   

If-None-Match  ●   

If-Range  ●   

If-Unmodified-Since  ●   

Last-Modified    ● 

Location   ●  

Max-Forwards  ●   

Meter  ● ●  

Pragma ●    

Proxy-Authenticate   ●  

Proxy-Authorization  ●   

Range  ●   

Referer  ●   

Retry-After   ●  

Server   ●  

Set-Cookie2   ●  

TE  ●   

Trailer ●    

Transfer-Encoding ●    

Upgrade ●    

User-Agent ●    

Vary   ●  

Warning ●    

WWW-Authenticate   ●  
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Also, the specification notes that new entity headers may be 
added to the protocol. Implementations that receive a mes-
sage header that they do not recognize should treat it as an 
entity header. 

3.2.1 Accept 

The Accept header, which is a request header, lets a client 
explicitly indicate what types of content it can accept in the 
message body of the server’s response, as well as its relative 
preference for each content type. Here is an example of an 
Accept header that a client might include in its request. 

Accept: text/plain; q=0.5, text/html,  
        text/x-dvi; q=0.8, text/x-c 

As you can see from the example, the Accept header can 
include a list of multiple content types. Commas separate 
individual types, and each type may include an optional 
quality factor. The quality factor is a parameter of a type, and 
a semi-colon separates it from the type. The previous exam-
ple indicates that the client can accept any of the following 
four content types: 

• text/plain; q=0.5 

• text/html 

• text/x-dvi; q=0.8 

• text/x-c 

Each individual content type consists of a type and a sub-
type, with a slash (/) separating the two. All of the content 
types have the main type text, but they differ in the sub-
types. Clients can use the asterisk as a wildcard for a subtype 
value or for both type and subtype. The content type text/*, 
for example, would indicate that the client could accept any 
text content, and the content type */* indicates that the cli-
ent can accept any content whatsoever. 

Defining Content Types 

The content types that HTTP 

specifies in the Accept header 

are defined by the Internet 

Assigned Numbers Authority, or 

IANA (www.iana.org), although 

responsibility will eventually shift 

to The Internet Corporation for 

Assigned Names and Numbers 

(www.icann.org). As of this writing, 

IANA has registered over 350 

different media types (their term 

for content type) in a two-level 

hierarchy. The top level indicates 

the general format of the content 

while the second level designates 

the specific format. The top-level 

types include text, multipart, 

message, application, image, 

audio, video, and model. 
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The quality factor is a number between zero and one. (The 
http specification limits it to three digits after the decimal 
point.) If a content type doesn’t have an explicit quality fac-
tor, it is assumed to be one. The text/html and text/x-c 
content types of the example, therefore, have an implied 
quality factor of 1.0. If a server is capable of returning multi-
ple content types for a given request, it should pick the one 
with the highest quality factor. Here’s the full interpretation 
of our example: The client prefers the response to contain a 
message body of type text/html or text/x-c. If the server 
cannot comply with that preference, the client is willing to 
accept a content type of text/x-dvi. And if that content 
type isn’t available either, the client will accept, as a last re-
sort, text/plain content. 

3.2.2 Accept-Charset 

Clients can include an Accept-Charset header in their re-
quests to tell the server which character encodings they pre-
fer for the message body returned in the response. The 
Accept-Charset header acts much like the basic Accept 
header (as well as other headers in the Accept- family). Cli-
ents may include a list of different character sets, and they 
can indicate a relative preference for different character sets 
by including a quality factor. If the quality factor is absent, 
the server assumes a value of 1.0. 

The http protocol does treat the iso 8859-1 differently than 
other character sets. Unless the client explicitly lists that 
character set and explicitly assigns it a quality factor other 
than 1.0, the server assumes that the client can accept iso 
8859-1 and would prefer that with a quality factor of 1.0. This 
behavior nearly ensures that iso 8859-1 is the default charac-
ter set for responses, as the client has to take extra steps to 
suggest otherwise. 

The message fragment that follows shows how a client may 
choose to request a special character set. With such a header, 
the client indicates that it prefers the Unicode character set, 
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but that it will accept any other (including iso 8859-1) with a 
relative preference of 0.8. 

Accept-Charset: unicode, *; q=0.8 

The Internet Assigned Numbers Authority currently main-
tains the list of defined character sets. At the time of this 
writing, that list included 235 different character sets.  

As a final point, note that this header (and all the Accept- 
headers) applies to the message body of the response. It does 
not influence either the Status-Line or the http headers of 
the response, all of which are always constructed from the 
iso 8859-1 character set. 

3.2.3 Accept-Encoding 

The Accept-Encoding header gives clients another way to 
express their preferences for the message body of the server’s 
response. In addition to content type (the Accept header) 
and character set (the Accept-Charset header), this header 
lets clients suggest content encodings for the response. (The 
TE header, described in section 3.2.44, lets clients express 
preferences for transfer encodings.) The format of the header 
is the same as the other Accept headers, a list of acceptable 
encodings, each with an optional quality factor. 

Accept-Encoding: compress, gzip; q=0.9, 
                 identity; q=0.8 

With the preceding fragment, the client requests that the 
response be encoded with the unix compress format, the 
gnu gzip format if that is unavailable, and, if all else fails, the 
identity encoding. 

3.2.4 Accept-Language 

The Accept-Language header is the last of the Accept- se-
ries that gives clients ways to express their preferences for the 
response. (The Accept-Ranges field acts quite differently.) 
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This header lets the client express a preference for the lan-
guage of the returned message. 

To designate particular languages, clients can use a multi-
level hierarchy, with each level separated by dashes. In its 
most common form, the first level is a two-letter iso 639 
language abbreviation, and the second level, if present, is a 
two-letter iso 3166 country code. For example, the code en 
represents English, and the code en-us represents American 
English. The Accept-Language header supports the same 
quality factors as the other Accept- headers, so a client can 
express preferences from among many languages. The 
following text asks for uk English first and any other English 
form if the first choice isn’t available. 

Accept-Language: en-gb, en; q=0.8 

Note that http servers do not automatically fall back to 
higher levels in a language hierarchy. The following header, 
for example, would be satisfied by only a us English re-
sponse. The server would not return a version in uk English, 
even if one were available. 

Accept-Language: en-us, *; q=0.0 

3.2.5 Accept-Ranges 

Unlike the other Accept- headers, the Accept-Ranges 
header is a response header; as such it appears in servers’ re-
sponses rather than clients’ requests. The current http 
specifications limit this header to two forms. The first form, 
shown in the example header below, lets a server indicate 
that it can accept range requests for the resource. 

Accept-Ranges: bytes 

As we’ll see in section 3.2.39, clients can issue requests for a 
range of bytes of a resource rather than the entire resource. 
This feature is particularly useful for downloading large files. 
If a download fails before completion, the client can use a 
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range request to ask for only the missing bytes; it doesn’t 
have to receive the entire file all over again. 

If the server cannot accept range requests for a resource, it 
may indicate that with the following header. 

Accept-Ranges: none 

Note that servers are not required to include an Accept-
Ranges header, regardless of whether they can accept range 
requests. Clients are also free to issue range requests even if 
they haven’t received an Accept-Ranges header. If the client 
happens to send a range request to a server that cannot sup-
port it, the server simply returns the entire resource. 

3.2.6 Age 

The Age header is a response header that estimates the age of 
the associated resource. Cache servers use this value to judge 
whether a cached resource is still valid or whether it has ex-
pired and must be refreshed from the origin server. The Age 
header’s value is the number of seconds that the sender esti-
mates have elapsed since the origin server generated or re-
validated the response. 

The best way to understand how the Age header works is 
with an example. Consider, therefore, the scenario that be-
gins with figure 3.5. That figure shows the initial request for 
a resource, and in it the request traverses two intermediate 
cache servers before reaching the origin server. 

As the figure shows, the origin server includes two important 
headers in its response. Those headers are the Date header, 
which is the time that it generates the response, and a 
Cache-Control header, which specifies the maximum age. 
In the example the server indicates that the response can be 
considered fresh (and, thus, cachable) for up to 600 seconds. 

The scenario continues in figure 3.6, which takes place about 
10 minutes later. In that figure, a client makes a request for 
the same resource. The first cache server no longer has a 
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copy in its cache, so it passes the request to the second cache. 
That server returns the object with the message headers that 
the figure includes in step 9. 

At this point the first cache server has an important decision 
to make: Is the object that the second cache returned still 
valid? To answer that question, the first cache server calcu-
lates several values based on the parameters in table 3.4. 

Client cache cache origin

4200 OK
Date: Thu, 11 Oct 2000...
Cache-Control:
    max-age=600

56

1 GET URI 2 GET URI 3 GET URI

200 OK
Date: Thu, 11 Oct 2000...
Cache-Control:
    max-age=600

200 OK
Date: Thu, 11 Oct 2000...
Cache-Control:
    max-age=600  

Client cache cache origin

9200 OK
Date: Thu, 11 Oct 2000...
Cache-Control: max-age=600
Age: 599

7 GET URI 8 GET URI

Figure 3.5 �
An origin server may identify the

maximum age for cached copies of an
object it returns. In this example the

server limits caching to 10 minutes
(600 seconds).

Figure 3.6 �
Cache servers can indicate how old

they believe an object to be with the
Age header. This cache server

estimates the object to be 599
seconds old, one less that its

maximum life.
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Table 3.4 Parameters for Cache Freshness Calculations 

Parameter Interpretation 

age_value The value in the Age header of the response (step 9); 

599 in the example. 

date_value The date assigned to the resource by the origin 

server (step 4); 11 October 2000 … in the example. 

now Current time at the first cache server. 

request_time The time that the cache made the request (step 8). 

response_time The time that the response (step 9) arrived. 

Table 3.5 shows the steps in the calculation. Note that the 
server actually bases its estimate of the resource’s age on two 
independent sources. It looks at the Age header explicitly, 
and it calculates the elapsed time from the resource’s original 
Date header. (An accurate elapsed time calculation assumes 
that the cache server and origin server have reasonable syn-
chronized time-of-day clocks.) The steps in table 3.5 ensure 
that the cache server picks the most conservative of these 
two values in its estimate, thus minimizing the chance that it 
inappropriately returns a stale resource. 

Table 3.5 Calculating the Freshness of a Cached Object 

Step Procedure 

1 Calculate the apparent age as the difference between 

response_time and date_value. 

2 Estimate the age of the resource as the maximum of the 

apparent age from step 1 and the Age header in the response. 

3 Add the difference between response_time and request_time 

to the estimated age of step 2 (to conservatively account for 

network transit delays). 

4 Add the difference between now and response time (to account 

for any delays within the cache server). 

The cache server uses this result as the actual age of the re-
source. If the actual age exceeds the origin server’s max-age 
value, then the cache server should not use the cached object 
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for the response. Instead, it should reissue the request to the 
origin server. 

To continue the example, suppose that one second has 
elapsed between the time that the first cache issued the re-
quest at step 8 and received the response of step 9. And fur-
ther suppose that an additional one second of delay occurred 
after the response arrived but before the cache server could 
process it. In such a case, the server will calculate the age of 
the object as 601 seconds. That value exceeds the origin 
server’s limit of 600 seconds, so the cache server should re-
ject the response. As a result, it may begin the process of fig-
ure 3.7, in which it reissues the request. (In the figure the first 
cache server adds its own Cache-Control header to the re-
quest of step 10; by setting the max-age directive to 0 in a 
response, the first cache server forces the second cache server 
to revalidate its own cache entry with the origin server.) 

The http specifications limit the Age header’s value to 2 147 
483 648 (or 231) seconds. Whenever an age value exceeds that 
limit in a server’s calculations, the server uses that maximum 
value instead. 

Client cache cache origin

200 OK
Date: Fri, 12 Oct 2000...
Cache-Control:
   max-age=600

GET URI
Cache-Control: max-age=0

GET URI

200 OK
Date: Fri, 12 Oct 2000...
Cache-Control:
    max-age=600

200 OK
Date: Fri, 12 Oct 2000...
Cache-Control:
   max-age=600

10
11

121314

Figure 3.7 �
When the Age of a cached object

exceeds its limit, cache servers must
consult the origin server for a new

copy or for revalidation of their
existing copy. This example, which is a

continuation of figure 3.6, has the
cache server request a new copy.
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3.2.7 Allow 

The Allow header identifies which http methods a particu-
lar resource supports. The header simply lists those methods 
as its value. The text below, for example, indicates that a re-
source supports the GET, HEAD, and PUT methods. 

Allow: GET, HEAD, PUT 

This header is particular useful (indeed, it is mandatory) 
when the server must return a 405 Method Not Allowed 
status. Clients may also use the header when they send a re-
source to a server with the PUT method. In that case, the cli-
ent recommends to the server which methods it should allow 
for the resource. The server, however, is not compelled to 
honor that recommendation. 

3.2.8 Authentication-Info 

The Authentication-Info completes a three-message user 
authentication exchange. It is a response header that servers 
can include in a successful response, and it gives the client 
additional information about the authentication exchange. 
For details, see section 4.1. 

3.2.9 Authorization 

Clients use the Authorization header to identify and au-
thenticate themselves—or their users—to a server. The proc-
ess of securing http sessions is important enough (and 
complicated enough) to merit its own chapter, so you’ll find 
a thorough description of authorization in the next chapter. 
Section 4.1, in particular, documents this specific header. 

3.2.10 Cache-Control 

The Cache-Control header is a master header for several 
different directives that specify caching behavior. These di-
rectives, some of which have parameters associated with 
them and some of which do not, are separated from each 
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other by commas. The following fragment, for example, 
specifies three cache control directives. 

Cache-Control: max-age=3600, no-transform, 
    no-cache="Accept-Ranges" 

Like headers, individual directives may be used in requests 
and responses. Table 3.6 lists http’s cache-control directives. 

Table 3.6 Cache-Control Directives 

Directive Parameters Request Response 

max-age Required ● ● 

max-stale Optional ●  

min-fresh Required ●  

must-revalidate None  ● 

no-cache Optional1 ● ● 

no-store None ● ● 

no-transform None ● ● 

only-if-cached None ●  

Private Optional  ● 

proxy-revalidate None  ● 

Public None  ● 

s-maxage Required  ● 

1Optional in responses; no parameters in requests 

The rest of this subsection considers each directive in turn. 

Cache-Control: max-age=3600 

The max-age directive serves two major purposes. First, 
when used by a server, it indicates the maximum time (in 
seconds) that a cache should retain the resource in its cache 
without revalidating it. In this role max-age is similar to the 
Expires header. If both a max-age directive and an Expires 
header are present in the same response, cache servers should 
ignore the Expires header, even if it is more restrictive than 
the max-age value. This rule allows origin servers to specify 
different behaviors for http 1.0 caches than for http 1.1 
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caches, because the 1.0 cache servers will not understand 
(and will, consequently, ignore) any max-age directive. 

The max-age directive serves its second major purpose when 
clients use it. When a client includes the directive in its re-
quest, the client indicates that it is willing to accept a cached 
object no older than the indicated value. If a cache server has 
an entry that’s older than the client’s requested age, it should 
not return the cached entry, even if the origin server’s origi-
nal response indicates the entry is still valid. In an extreme 
case, the client may specify a max-age of zero, in which case 
cache servers should always pass the request to the origin 
server for revalidation of locally cached entries. 

Cache-Control: max-stale 

With the max-stale directive, a client indicates that it is 
willing to accept a response that includes a cached object, 
even if the object has apparently expired. The client can op-
tionally limit how long past the apparent expiration time it is 
prepared to accept responses. A directive of max-stale=600, 
for example, indicates that the client is willing to accept re-
sponses up to 10 minutes (600 seconds) past their apparent 
expiration time. 

Cache-Control: min-fresh=60 

When a client includes the min-fresh directive in its re-
quest, it tells cache servers to return a cached entry only if 
the entry will remain fresh for at least the specified number 
of seconds. If, for example, a cache contained an object that 
would not expire for another 45 seconds, the cache server 
could not return the local copy in response to the request 
header example above. The example above requires that any 
local copy has at least 60 seconds of life remaining, and 45 
seconds doesn’t qualify. 

Cache-Control: must-revalidate 

The must-revalidate directive lets servers counteract the 
use of max-stale by their clients. When a server includes 



68 HTTP Essentials 

 

must-revalidate in its response, cache servers should ig-
nore the max-stale directive in any future client requests. 

Cache-Control: no-cache 

The no-cache directive may appear in either requests or re-
sponses. In a request, this directive indicates that the client is 
not willing to accept cached responses; any intermediate 
cache servers must pass the request on to the origin server. 
Note that this request differs slightly from a request that in-
cludes a max-age=0 directive. In the case of no-cache re-
quests, cache servers must always retrieve the response from 
the origin server. With max-age=0, however, cache servers 
need only revalidate their local cache with the origin server. 
If the origin server indicates the cached entry is still valid, 
the cache server may use it as a response. 

When the origin server includes a no-cache directive in its 
response, it tells cache servers not to use the response for 
subsequent requests without revalidating it. This rule doesn’t 
exactly prohibit cache servers from caching the response (de-
spite the directive’s name); it merely forces them to revalidate 
a locally cached copy with each request. 

If an origin server wants to restrict caching of only certain 
header fields rather than the entire response, it can do that 
by naming those headers in this directive. By including no-
cache="Accept-Ranges" in its response, for example, the 
origin server tells cache servers that they can cache the re-
sponse, but they should not include the response’s Accept-
Ranges header when they answer subsequent requests with 
the cached copy. 

Cache-Control: no-store 

The no-store directive identifies sensitive information, ei-
ther in a request (and its subsequent response) or in a re-
sponse alone. This directive tells cache servers not to store 
the messages in any local storage, particularly if its contents 
may be retained (e.g., on backup tapes) after the exchange. 
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Cache-Control: no-transform 

The no-transform directive, which can appear in either a 
request or a response, tells cache servers not to modify the 
format of the response’s message body. Some cache servers 
might otherwise do so, for example, to save cache space by 
converting a high-resolution image to a lower resolution. 

Cache-Control: only-if-cached 

With the only-if-cached directive, a client asks cache serv-
ers to respond successfully only if they have the object in 
their local cache. In particular, the client asks the cache not 
to reload the response or revalidate it with the origin server. 
This behavior may be useful in the environments with espe-
cially poor network connectivity where the client feels the 
delay in reaching the origin server is unacceptable. If a cache 
server cannot answer the request from its local cache, it 
should return a 504 Gateway Timeout status. 

Cache-Control: private 

The private directive in a response indicates that the re-
sponse is intended strictly for a specific user. Cache servers 
may retain a copy for responses to subsequent requests from 
the same user, but they should not return that cached copy to 
other users, even if those users issue the same request. 

Cache-Control: proxy-revalidate 

The proxy-revalidate directive tells any intermediate 
cache servers that they should not return the response to 
subsequent requests without revalidating it. Unlike the must-
revalidate directive, however, this directive does permit 
clients themselves to cache the response and reuse the 
cached entry without revalidation. 

Cache-Control: public 

The public directive is the opposite of the private direc-
tive. With it, a server explicitly indicates that its response 
may be cached and returned to other users, even if the re-
sponse would otherwise be restricted to the original user or 
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even non-cachable at all. If a client provides user authentica-
tion information, for example, cache servers should normally 
treat any response as private to that user. But if the server is 
merely responding with a 301 Moved Permanently status, 
for example, it can use the public cache control directive to 
tell cache servers to override their normal behavior and cache 
the response. 

Cache-Control: s-maxage=1800 

The s-maxage directive acts much like the max-age directive 
in responses, except that it applies only to caches serving 
multiple users. For such cache servers, the s-maxage direc-
tive overrides both the max-age directive and the Expires 
header. Cache servers responding to the same user multiple 
times, however, can ignore this directive. 

3.2.11 Connection 

According to the http specifications, the Connection 
header allows the message sender (the client in the case of 
requests, the server for responses) to indicate to proxies any 
other headers in the message that should not be forwarded 
further. Consider the example of figure 3.8. In the figure, the 
client issues a request that includes two message headers: 
Upgrade and Connection. The proxy server, when it sees the 
Connection header, removes the indicated Upgrade header 
from the request before forwarding it. The Connection 
header, therefore, identifies other http headers that should 
be delivered only to the next hop. 

Client Proxy Origin Server

1

GET URI
Upgrade: HTTP/2.0
Connection: Upgrade

2 GET URI

 

Figure 3.8 �
The Connection header identifies

other HTTP headers that proxy servers
should remove from messages that

they relay. In this example the proxy
does not include the Upgrade header

when it forwards the GET request.
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Most hop-by-hop headers are explicitly identified as such in 
the specifications. The Upgrade header of the figure, for ex-
ample, is defined to have significance only to the next hop. 
Strictly speaking, therefore, the Connection header is not 
necessary. As long as all the systems follow the same http 
standards, they’ll already know which headers are hop-by-
hop. The Connection header’s real benefit, however, comes 
into play if the http standards are ever extended. It allows 
http to define new hop-by-hop headers, safe in the knowl-
edge that existing systems will treat them as hop-by-hop so 
long as the Connection header identifies them. 

The Connection header also has another use, and that is to 
manage persistent connections. In fact, the Connection 
header actually has two important uses related to persistent 
connections. The first is rather simple; it provides a way for 
either party to gracefully signal that they’re about to close a 
connection. The second use supports persistence in a way 
that is backwards compatible with http version 1.0. 

As section 2.1.3 notes, with http version 1.1, persistent con-
nections are the default behavior. When a client opens a 
connection for a request, it expects the connection to remain 
open for additional requests to the same server. But what if 
the server doesn’t want to keep the connection open? It 
could, of course, just close the connection after it sends its 
response. That behavior is legal, and the client will eventually 
recognize what has happened and act appropriately. The 
problem, though, is that the client doesn’t receive any warn-
ing. It may be preparing to send a new request just when the 
server effectively yanks the rug out from underneath it. 
When that happens, it may take the client several seconds 
(possibly much longer) to recognize what has happened and 
recover. A more polite server will include the following 
header in its initial response. 
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Connection: close 

This header tells the client that the server is planning to 
close the connection after completing its response. The client 
should prepare accordingly. Clients can also include a Con-
nection: close header in their requests. In such a case the 
client is letting the server know that it does not plan to use a 
persistent connection and will, instead, close the current 
connection as soon as it receives its response. Note that Con-
nection: close is not restricted to the first request or re-
sponse in a connection. Either party can use it even after a 
connection has been established and used for previous ex-
changes. Once this header appears, though, future exchanges 
on the connection will not take place. 

The second major use of the Connection header is support-
ing older systems. Because persistence was not the default 
behavior before http 1.1, earlier implementations used ex-
plicit headers to request persistence connections. Those 
headers include a Connection: Keep-Alive and, optionally, 
the Keep-Alive header itself. (Because it is no longer 
needed, http 1.1 does not define a Keep-Alive header.) 

GET / HTTP/1.1 
Keep-Alive: timeout=5 
Connection: Keep-Alive 
 

The server agrees to use persistent connections by respond-
ing with its own Connection and Keep-Alive headers.  

HTTP/1.1 200 OK 
Keep-Alive: timeout=5, max=120 
Connection: Keep-Alive 
Content-Type: text/html 
 
<html>... 

As a practical matter, the presence of the Connection: 
Keep-Alive header indicates http persistence, not the 
Keep-Alive header itself. 
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3.2.12 Content-Encoding 

The Content-Encoding header identifies any special encod-
ings that are an inherent part of the resource contained in 
the message body. Together with the Content-Type header, 
this header specifies the format of the resource. If, for exam-
ple, a client requested the file manual.ps.gz, it might receive 
the file in a response with the following message headers. 
The Content-Type header identifies the ultimate object as a 
PostScript file, but the Content-Encoding header notes that 
the file has been compressed with the gzip program. 

HTTP/1.1 200 OK 
Content-Type: application/postscript 
Content-Encoding: gzip 
 

The http specifications recognize four different content 
encodings, all of which are listed in table 3.7. 

Table 3.7 HTTP Content-Encodings 

Identifier Meaning 

compress The encoding format produced by the UNIX program 

compress. (Older implementations may use x-compress.)

deflate The zlib encoding format defined in RFC 1950. 

gzip The encoding format produced by the gzip program, as 

described in RFC 1952. (Older implementations may use 

x-gzip.) 

identity The absence of any special encoding format. 

Note that Content-Encoding is similar to, but slightly dif-
ferent from, Transfer-Encoding. Content-Encoding is an 
intrinsic characteristic of the resource, while Transfer-
Encoding is applied externally by the http server just for 
the purpose of transferring the resource. As a practical mat-
ter, though, receiving systems treat both encodings the same; 
they both must be reversed to uncover the actual resource. 
The trick is ensuring that the reverse transformations occur 
in the correct order. In the following fragment, for example, 
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the resource was first compressed using gzip; the result was 
then further encoded using compress, and, finally, the 
“chunked” transfer encoding was applied. (The example is, 
admittedly, rather artificial.) The receiving system should 
undo those encodings in the reverse order: first chunked, 
then compress, and finally gzip. 

Content-Encoding: gzip, compress 
Transfer-Encoding: chunked 

3.2.13 Content-Language 

The Content-Language header identifies the natural lan-
guage of the included resource. The format is the same as in 
the Accept-Language header described in section 3.2.4. Note 
that the http specification intends this field specifically for 
human languages such as English. It should not be used to 
indicate computer languages like C or Java. 

3.2.14 Content-Length 

The Content-Length header gives the size of the message 
body in bytes or, in the case of a response to a HEAD method, 
the size of the message body if it were to be included. The 
Content-Length header is actually one of several different 
ways that the recipient may determine the size of a message. 
A recipient may also determine message length from the 
transfer encoding or content type format, and it can infer the 
end of a message when the underlying tcp connection 
closes. 

Table 3.8 lists the rules that a recipient uses to determine the 
end of an http message, in order of priority. As the rules 
indicate, a sender should not include the Content-Length 
header if the message is a response that does not permit mes-
sage bodies, or if the message body is encoded using the 
chunked format. 
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Table 3.8 Rules for Determining the End of an HTTP Message 

Priority Rule 

1 If the response has a status code that does not permit mes-

sage bodies (e.g. ,1xx, 204, and 304 status codes) then the 

message ends at the first empty line after the header fields. 

Any further message content is ignored. 

2 If the Transfer-Encoding for the message is chunked, 

then the message length is determined by the chunked for-

mat. (See section 3.2.46.) 

3 If the Content-Length header is present, then it provides 

the length of the message. 

4 If the message has a Content-Type of multi-
part/byteranges, then the media type format defines 

the end of the message. 

5 If the server closes the connection, the last byte sent is the 

end of the message. 

3.2.15 Content-Location 

The Content-Location header provides the Uniform Re-
source Identifier corresponding to the message body. A 
server may choose to use this header if the resource it returns 
depends on more than the request’s uri. For example, a 
server may have different language translations of a resource 
available, and it may decide to return one particular transla-
tion based on the Accept-Language header in the request. 
In such a case, the Content-Location header may identify 
the translated object instead of the original requested object. 

In practice, the Content-Location header is rarely used. It 
should not be confused with the Location header (see sec-
tion 3.2.33.), which does appear quite frequently in Web 
transactions. While the Content-Location header specifies 
the uri of the resource being returned in the message body, 
the Location header identifies an alternate uri for the re-
quested resource; the resource itself is not part of the mes-
sage body when the Location header appears. 



76 HTTP Essentials 

 

3.2.16 Content-MD5 

The Content-MD5 header provides assurance that a message 
body reaches its destination without modification. The value 
of this header is the result of running the Message Digest 5 
(md5) algorithm with the message body (before any transfer 
encoding) as input. The md5 algorithm, which chapter 4 dis-
cusses in more depth, resembles a checksum, but it uses 
cryptographic principles to make the result relatively im-
mune to undetectable errors. 

Here’s how a system calculates the value for this header be-
ginning with the following html page as the message body. 

<HTML> 
    <BODY> 
        <P>Hello World!</P> 
    </BODY> 
</HTML> 

Running the md5 algorithm on the html page results in the 
following 128-bit binary value. The fragment shows the result 
as 16 bytes, each represented in hexadecimal notation. 

B2 B3 59 59 1E 96 1C 6B 0F 46 8F E5 36 BC D9 20 

Because the md5 algorithm creates a binary value, and http 
headers must be text, the Content-MD5 header uses the 
base64 algorithm to convert binary to ascii. The result of the 
base64 encoding is as follows. 

Content-MD5: srNZWR6WHGsPRo/lNrzZIA== 

To see the full context for the Content-MD5 header, here is a 
full response from the server, including both the http head-
ers and the message body. 

HTTP/1.1 200 OK 
Date: Sun, 08 Oct 2000 18:46:12 GMT 
Server: Apache/1.3.6 (Unix) 
Content-Type: text/html 
Content-Length: 66 
Content-MD5: srNZWR6WHGsPRo/lNrzZIA== 
 
<HTML> 

The MD5 Algorithm 

RFC 1321documents the MD5 

algorithm in full. It includes a 

complete implementation of the 

algorithm in C-Language source 

code. 

Base64 Encoding 

Base64 encoding was originally 

developed as a way to send binary 

objects using email. It is defined in 

RFC 2045, one of the series of 

specifications for Multipurpose 

Internet Mail Extensions (MIME). 
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    <BODY> 
        <P>Hello World!</P> 
    </BODY> 
</HTML> 

The Content-MD5 header provides end-to-end protection of 
the content so that recipients can detect problems introduced 
by the network or by intervening proxy servers. To ensure 
this behavior the http specification expressly prohibits 
intermediate servers from creating or modifying the 
Content-MD5 header. Only the origin server (for responses) 
or the client (for requests) can create this header. 

As one final note, the Content-md5 header can identify acci-
dental changes to the message content, but it cannot detect 
malicious attacks. An attacker that modifies http content 
merely needs to adjust the Content-md5 header value to 
match. Chapter 4 discusses more secure ways to protect 
http content. 

3.2.17 Content-Range 

When a server includes only part of a resource in its message 
body, the Content-Range header specifies which part. This 
feature is particularly useful for resuming a file download 
after that download aborted. To see this process in action, 
consider figure 3.9. In that figure, the scenario begins when 

Client Server

2

1 GET URI

200 OK
Content-Length: 1234
Accept-Ranges: bytes

Transfer
aborted after

500 bytes
 

� Figure 3.9 
When problems occur, a client may 
not receive all of a requested 
object. In this example the client 
requests an object that consists of 
1234 total bytes, but the transfer 
aborts after only 500 bytes actually 
reach the client. 
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the client requests an object. As the figure shows, the server 
begins returning the resource, which consists of 1234 bytes of 
information. The transfer aborts, however, after only 500 
bytes of the object successfully make it to the client. 

In its original response, however, the server indicates that it 
can accept range requests for the object. The Accept-Ranges 
header conveys that information. Consequently, when the 
client realizes that the transfer has aborted, it does not have 
to request the entire object again. Instead, as figure 3.10 
shows, it includes a Range header in its re-issued request. 

With the request of step 3, the client asks only for bytes 500 
through the end of the resource. The server obliges in step 4. 
Here is where the Content-Range header appears. The first 
part of the header’s value identifies the unit. Currently http 
supports only bytes. The next part lists the range of bytes 
included. In this example, the server’s response begins with 
byte 500 of the object and ends with byte 1233. The last part 
of the header provides the total size of the object, 1234 bytes 
in the example. As these examples indicate, http numbers 
bytes beginning at 0; the first byte of a resource is byte 0. 

3.2.18 Content-Type 

The Content-Type header identifies the type of object the 
message body contains. (In a response to the HEAD method, 

Client Server

4

3
GET URI
Range: bytes=500-

206 Partial Content
Content-Length: 734
Content-Range: bytes 500-1233/1234

Figure 3.10 �
With the Range header, a client can

ask for only part of an object. This
example, which continues figure 3.9,

shows how the client asks for the rest
of the object.
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the Content-Type identifies the type of object that would be 
in the message body, if one were present.) Values for the 
Content-Type header follow the same type/subtype format 
we first saw with the Accept header. In addition, many of 
the defined content types allow for additional parameters 
that provide further information. For example, the fragment 
below indicates that the resource is a text file and that it uses 
the iso 8859-4 character set. 

Content-Type: text/plain; Charset=ISO-8859-4 

3.2.19 Cookie 

If a client wishes to support http state management (see 
section 2.5), it provides any cookies it has received from a 
server in subsequent requests to that server. Those cookies 
are carried in a Cookie header, much like the following. This 
example shows only a single cookie, but a client may con-
ceivably have multiple cookies from the server, in which case 
it may combine all of them in one header or use separate 
headers. 

Cookie: $Version="1"; NAME="VALUE";  
        $Path="/shopping"; $Domain="www.shop.com"; 
        $Port="80" 

Each cookie begins by identifying the version of http state 
management the client is using; the current version is 1, as in 
the example. The version is always followed by the name of 
the cookie and its value. These are set by the server in its 
Set-Cookie or Set-Cookie2 header, but note that the server 
cannot use a cookie name of $Version. Otherwise it would 
be impossible to recognize the cookie in a header. The http 
specification, in fact, prohibits cookie names from starting 
with the $ character. 

The additional fields that follow the cookie name and value 
are optional. If present, they identify the path, domain, and 
port of the cookie. 
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3.2.20 Cookie2 

Despite the similarity in names, the relationship between the 
Cookie2 and Cookie headers is not at all like that between 
the Set-Cookie2 and Set-Cookie headers. While Set-
Cookie2 is just a slightly modified version of Set-Cookie, 
Cookie2 and Cookie are different headers with completely 
different uses. 

The Cookie2 header merely indicates which version of the 
state management specification the client supports. The cur-
rent version is 1, so the header will look like the following. 

Cookie2: 1 

A client should include this header whenever it sends a 
Cookie header. That will let the server know it can use Set-
Cookie2 headers as well as Set-Cookie headers in 
subsequent responses. Clients that don’t fully support Set-
Cookie2 will omit the Cookie2 header, even though they 
might include a Cookie header. Servers will know not to 
send those clients Set-Cookie2 responses. 

3.2.21 Date 

The Date header indicates the time that the system sending 
a message originally generated that message. Note that Date 
values apply to the message, not necessarily to the resource 
identified or contained in the message. The Last-Modified 
header (see section 3.2.32) provides the time of the resource. 

With version 1.1 of http, systems are required to use the 
following format for date values that they generate. This for-
mat is defined in rfc 1123. 

Date: Sun, 06 Nov 1994 08:49:37 GMT 

To remain compatible with earlier implementations, http 1.1 
systems should accept dates in two other formats. The first 
format, shown in the fragment below, is defined in rfc 850. 
Note that it provides only for two-digit years, and the day of 
the week is of variable length. 
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Date: Sunday, 06-Nov-94 08:49:37 GMT 

Another common format in earlier http implementations is 
the following. This is the output of the function asctime(), 
part of the standard C-Language library. 

Date: Sun Nov  6 08:49:47 1994 

The http specifications require origin servers to include a 
Date header in their responses, unless one of three 
conditions applies. If the response status is a 100 Continue 
or 101 Switching Protocols, the server may omit the 
Date header. Also, if the response status indicates a server 
error (e.g., 500 Internal Server Error) and the server 
cannot conveniently generate a valid date, it can omit the 
Date header. And finally, servers without a reasonably accu-
rate clock should not include a Date header. This last condi-
tion doesn’t often apply to traditional Web servers running 
on standard computing platforms, but it may be the case for 
special-purpose devices that include embedded Web server 
functionality. 

3.2.22 ETag 

The ETag header gives servers a more reliable way to identify 
resources, especially to improve caching performance. With-
out the ETag header, it can be difficult for caches (whether in 
proxy servers or in the client) to unambiguously identify re-
quested resources. Consider, for example, the url 
http://www.yahoo.com/. The actual resource returned may 
vary based not just on time, but also on geographic location. 
Users in the United Kingdom may see a different home page 
than users in France, as figures 3.11 and 3.12 demonstrate. 

This problem can seriously complicate the life of Web 
caches, especially if all they have to identify a resource is its 
url. The ETag header solves the problem by providing a 
simple and unambiguous way to identify resources. Origin 
servers can assign an ETag, which is short for “entity tag,” 
value to resources as they return them. 

http://www.yahoo.com/
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An ETag value can contain arbitrary characters within double 
quotation marks; the actual value is completely up to the ori-
gin server. The following fragment is how a server might 
assign an ETag value in its response. 

ETag: "xyzzy" 

ETag values also come in two varieties: strong and weak. Re-
sources with the same strong ETag value are identical, byte 
for byte. Resources with the same weak ETag value, however, 
are merely equivalent. Weak ETag values begin with the w/ 
prefix, as the text below illustrates. 

ETag: w/"xyzzy" 

Caches normally use ETag values with If-Match and If-
None-Match headers. Sections 3.2.27 and 3.2.29 document 
their operation. 

 

Figure 3.11 �
Web servers can tailor the contents of

a Web page to suit specific users. In
this example the user is located in the
United Kingdom, so the server returns

content especially for that location.
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3.2.23 Expect 

With the Expect header, a client tells a server that it expects 
a particular behavior. The http specifications define Expect 
as an extensible header, but the only currently defined use for 
it is if a client expects a server to send a 100 Continue 
status. In that case the client includes the following header. 
(For more details on the 100 Continue status, see section 
3.3.1.) 

Expect: 100-continue 

If a server receives an Expect header with which it cannot 
comply, it responds with a 417 Expectation Failed status. 

When the client is communicating through a series of proxy 
servers, each proxy in the chain is expected to respond to the 

 

� Figure 3.12 
A user in France who requests the 
same URI may get entirely different 
content, making it difficult for cache 
servers to tell if a locally cached copy 
is appropriate for a given request. 
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Expect. In addition, the proxy should pass the Expect 
header upstream to the next server without modification. 

3.2.24 Expires 

The Expires header indicates a time, beyond which a re-
source may no longer be valid. Until then, caches may keep a 
copy of the response and return that copy in response to sub-
sequent requests. The header’s value is a date, as in the text 
below, but some older implementations may use invalid for-
mats, particularly Expires: 0, to indicate that a resource 
should not be cached at all. 

Expires: Thu, 01 Dec 1994 16:00:00 GMT 

Officially, if a server doesn’t wish a resource to be cached, it 
sets the Expires header value to be the same as the Date 
header value. In practice, however, most servers simply set 
the Expires header to some time in the past. The http 
specifications also prohibit a server from setting the Expires 
header value to be more than one year in the future. 

Recall from section 3.2.10 that a Cache-Control max-age 
directive overrides the Expires header. Because http intro-
duced Cache-Control with version 1.1, and many earlier 
implementations supported Expires, the combination of 
both headers lets servers specify different expiration times for 
version 1.1 and pre-version 1.1 caches. A server might do that 
if there are additional 1.1 features that allow it to safely ex-
tend the age of the resource. 

3.2.25 From 

Clients can use the From header to identify the human user 
for a request. The value of this header, as the example below 
shows, is an email address. Because unsolicited email has 
made many users very wary of revealing their email ad-
dresses, most http clients no longer include this field in 
their requests. 

From: stephen.thomas@waterscreek.com 
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3.2.26 Host 

With version 1.1, http introduced the Host header specifi-
cally to help Web hosting providers. Without the Host 
header, such providers are often forced use their hosting re-
sources inefficiently. The problem, as we saw in section 2.4.1, 
is that providers like to run multiple companies’ Web sites on 
the same physical server system. But if, for example, a single 
physical server supports both www.companya.com and 
www.companyb.com, how does that server respond to the 
following request? Is the client asking for the home page of 
company a or company b? 

GET / HTTP/1.1 
Accept: */* 
User-Agent: Mozilla/4.0  
    (compatible; MSIE 5.5; Windows NT 5.0) 
 

Without the Host header, providers are forced to dedicate 
different ip addresses for each client. (All standard Web 
servers allow the host system to have multiple, simultaneous 
ip addresses.) The server can then determine the response 
based on the ip address to which the client sent the request. 
Unfortunately, ip addresses are a scarce commodity, and pro-
viders would rather not use them unnecessarily. The Host 
header comes to their rescue by allowing clients to explicitly 
indicate the dns name for the resource they’re requesting. 
With a Host header, the preceding request might instead 
look like the following. This time the client specifically iden-
tifies the host as company a. 

GET / HTTP/1.1 
Accept: */* 
User-Agent: Mozilla/4.0  
    (compatible; MSIE 5.5; Windows NT 5.0) 
Host: www.companyA.com 
 

Although it’s rarely used in practice, http 1.1 does allow a 
client to specify a full uri in its request. In such cases the 
server should ignore the value of the Host header if one is 
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present. For example, a server would treat the following re-
quest as a request for Company b’s home page, even though 
the Host header indicates something else. 

GET http://www.companyB.com/ HTTP/1.1 
Accept: */* 
User-Agent: Mozilla/4.0  
    (compatible; MSIE 5.5; Windows NT 5.0) 
Host: www.companyA.com 
 

3.2.27 If-Match 

The If-Match header makes a client’s request conditional; 
the server accepts the request only if certain conditions are 
true. Specifically, the If-Match header lists one or more en-
tity tags, and the server should process the request only if the 
identified resource matches one of the entity tags. The server 
must not use weak ETag values (see section 3.2.22.) for its 
comparison. 

The If-Match header can be a significant help when clients 
are editing resources stored on a server. In that type of envi-
ronment, If-Match can prevent conflicts that may occur 
when multiple users edit the same resource. For example, 
look at the scenario that starts with figure 3.13. In that figure 

Client A

Server

2

1 GET URI

200 OK
ETag: "1234"

Client B

3 GET URI

4
200 OK
ETag: "1234"

Figure 3.13 �
Two different clients request the same

object. Since the object is identical in
both responses, the server assigns it

the same ETag value.
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two different clients request a resource. In both cases the 
server returns the resource with an ETag header of 1234. 

The example continues with figure 3.14. There the first client 
finishes editing the resource and returns the modified object 
to the server with a PUT method. The If-Match header tells 
the server to process the request only if the resource’s entity 
tag is still 1234. As far as the server knows, the resource hasn’t 
changed, so the server accepts the request. At this point, 
however, the resource has changed. It takes the new value 
supplied by the first client. Because of this change, the server 
must assign the resource a new entity tag. 

Sometime later, the second client finishes its modifications 
and attempts to return the new object to the server. That 
request is step 8 and, as the figure shows, it also includes an 
If-Match header. In this case, though, the 1234 doesn’t match 
the resource’s new entity tag. The server rejects the request 
with a 412 Precondition Failed status. 

Clients can also use an If-Match header with an asterisk for 
the entity tag, as in the example that follows. In this case the 
client asks the server to carry out the request only if the re-
source already exists, regardless of its current entity tag. A 

Server

6

5
PUT URI
If-Match: "1234"

200 OK

Client B

8

9

412 Precondition Failed

PUT URI
If-Match: "1234"

Client A

7

Server updates
ETag Value

 

� Figure 3.14 
Client A returns a modified version of 
the object in step 5. Because the 
object has now changed, the server 
gives it a new ETag value. Later, when 
client B tries to update the original 
object (with the old ETag value), the 
server recognizes the conflict and 
refuses the request. 
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client might use this option if it wanted to prevent its PUT 
request from creating a brand new resource. 

If-Match: * 

3.2.28 If-Modified-Since 

The If-Modified-Since header lets clients and proxy serv-
ers make more efficient use of their caches. It asks a server to 
respond to a request only if the resource has changed since 
the specified date. Figure 3.15 shows how http systems can 
use this header. The figure shows a standard GET request that 
passes through a proxy server. A key element of the server’s 
response is the Last-Modified header, with which the server 
identifies the last time the requested resource changed. 

The example continues in figure 3.16. Some time later the 
client issues another request for the same resource. The proxy 
has a copy of the earlier response in its local cache, so it in-
serts the If-Modified-Since header into the request before 
passing it to the origin server. The value of that header is the 
same as the server’s original Last-Modified time. 

In the example, the resource has not changed. Instead of re-
turning the entire object, the origin server responds with a 
304 Not Modified status. This status tells the proxy server 
that its cached copy of the object is still valid, so it returns 
that copy to the client. If the object is a large one, this step 

Client Proxy Origin Server

2 GET URI

34
200 OK
Last-Modified: Thu, 11 Oct 2000...

1 GET URI

200 OK
Last-Modified: Thu, 11 Oct 2000...  

Figure 3.15 �
When a server returns an object, it

indicates the last time that the object
changed by specifying the Last-

Modified header value.
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may have saved considerable network bandwidth and delay 
because the object doesn’t have to travel from the origin 
server to the proxy a second time. 

Clients can use the If-Modified-Since header not only for 
standard requests, but also for partial requests with the Range 
header. In such cases, the If-Modified-Since value applies 
to the object as a whole, not just to the requested part of the 
object. 

Servers receiving requests with If-Modified-Since headers 
should honor that header only if they would otherwise return 
a 200 OK status. Also, if the date in an If-Modified-Since 
header is invalid, either because it is in the wrong format or 
because it is later than the server’s current time, then the 
server should ignore the header and return the resource. 

Clients that use the If-Modified-Since header should take 
into account two problems with many deployed servers. 
First, some servers compare the If-Modified-Since value 
for an exact match with the resource’s Last-Modified value. 
Even if the If-Modified-Since value is later than the 
Last-Modified value, those servers will return the full en-
tity. Clients that want to accommodate this behavior should 
use only values from Last-Modified headers. The second 
issue is one of clock synchronization. Clients should be 
aware that server clocks may not always be correct; they are 

Client Proxy Origin Server

2
GET URI
If-Modified: Thu, 11 Oct 2000...

34 304 Not Modified

1 GET URI

200 OK
Last-Modified: Thu, 11 Oct 2000...  

� Figure 3.16 
A proxy server can use the If-Modified 
header to ask for an object only if it 
has changed. In this example the 
object has not changed, so the server 
returns a 304 status. 
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subject both to inaccuracies in timing and to human errors 
(e.g., in setting the wrong time zone). Again, the best way 
for clients to accommodate such problems is to use only val-
ues from the servers’ Last-Modified headers. 

3.2.29 If-None-Match 

The If-None-Match header is the complement of the If-
Match header; it has the exact opposite effect. When a client 
includes If-None-Match, it asks a server to complete a re-
quest only if the indicated resource has an entity tag that 
differs from that in the header. Servers can consider strong 
ETag values (see section 3.2.22.) for all requests and weak 
ETag values only with GET or HEAD methods. 

For GET and HEAD requests, the If-None-Match header works 
like the If-Modified-Since. If the server finds that the en-
tity tag for the resource is the same as one listed in the If-
None-Match header, the server returns a 304 Not Modified 
status. If the client includes both an If-None-Match and an 
If-Modified-Since header in its request, the If-

Modified-Since header takes precedence.  If the server be-
lieves the resource is more recent than the If-Modified-
Since time, it returns the complete resource regardless of the 
value of the If-None-Match header. 

In all cases, if the request would result in any status other 
than 2xx or 304 were the If-None-Match header not pre-
sent, the server should return that status and ignore the If-
None-Match. 

Just as with the If-Match header, If-None-Match lets a cli-
ent use the asterisk to represent any entity tag value. This 
use, which the example below illustrates, asks the server to 
accept the request only if the resource does not currently ex-
ist. A client might use this header value on a PUT request if it 
wanted to be sure and not overwrite an existing object. 

If-None-Match: * 
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3.2.30 If-Range 

The If-Range header improves performance for clients or 
proxies that have part of an object in their local cache. With-
out If-Range, the client may require two separate exchanges 
to get a new copy of the object once that object has been 
modified. Figure 3.17 shows the message exchanges when If-
Range isn’t used. 

In step 1, the client asks for bytes 500 through 1000 of the 
resource, but only if the entity tag for that resource is still 
"1234". When the server recognizes that the resource has 
changed, it responds with a 412 Precondition Failed 
status. The client then has to issue the request again, this 
time asking for the new object. 

The If-Range header lets a client combine both of these 
requests into one, as figure 3.18 illustrates. In its request, the 
client includes an If-Range header and a Range header. To-
gether, those two tell the server to return only the requested 
range if the resource’s entity tag is still "1234"; otherwise, 
the server should return the entire object. In the example, the 
object has changed, so the server returns the full object with 
a 200 OK response. 

For those servers that don’t use entity tags, the If-Range 
header has an alternative format. Instead of an entity tag for 

Client Server

2

1
GET URI
If-Match: "1234"
Range: bytes=500-1000

412 Precondition Failed

3 GET URI

4200 OK
ETag: "5678"  

� Figure 3.17 
Without the If-Range header, a client 
may have to make two requests when 
it has part of an object but the part is 
no longer valid. The first request tells 
the client that its copy is invalid, and 
the second request actually retrieves 
the entire new object. 
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the If-Range value, the client may use a date. In those cases 
the client asks the server to return the partial range if the 
resource has not been modified since the specified date. Oth-
erwise the server returns the full object. Figure 3.19 shows 
how a client might use this option. In this figure, unlike the 
previous two, the resource hasn’t changed, so the server re-
turns only the requested range. 

The If-Range header doesn’t use any special formatting to 
distinguish If-Range entity tags for If-Range dates. It is the 
server’s responsibility to interpret the header correctly. Be-
cause entity tags are enclosed in double quotation marks and 
dates are not, servers can easily make that determination. 

3.2.31 If-Unmodified-Since 

As you might expect, the If-Unmodified-Since header is 
the opposite of If-Modified-Since. If a client includes If-
Unmodified-Since in its request, it asks the server to accept 
the request only if the referenced resource has not changed 

Client Server

1
GET URI
If-Range: Tue, 17 Oct...
Range: bytes=500-1000

2
206 Partial Content
Last-Modified: Tue, 17 Oct ...
Content-Range: bytes 500-1000/2500  

Client Server

1
GET URI
If-Range: "1234"
Range: bytes=500-1000

2200 OK
ETag: "5678"  

Figure 3.19 �
A client can indicate a date as well as

an ETag value with the If-Range
header. In both cases the server

returns a partial object only if the
client’s existing part is still valid.

Figure 3.18 �
The If-Range header lets a client ask
for either part of an object or, if the

part is no longer valid, the entire
object, all in a single request.



HTTP Messages 93 

 

since the indicated date. A client might use this header in 
PUT requests if it wanted to ensure that no other party had 
modified a resource while the client was editing it. 

As with the other If- headers, servers should consider the 
If-Unmodified-Since header only if the request would oth-
erwise return a 200 OK status. When that is the case, but the 
If-Unmodified-Since condition does not hold, a server 
returns a 412 Precondition Failed status. 

3.2.32 Last-Modified 

The Last-Modified header provides the date the origin 
server believes the indicated resource was last modified. This 
header, an example of which appears below, is primarily of 
benefit to proxies and clients that cache objects, as it allows 
them to date an object in their local cache. When the system 
needs to get a new copy of an object, it can use this date, 
along with the If-Modified-Since header, to prevent the 
server from resending the entire resource if it has not 
changed. Figures 3.15 and 3.16 show this operation. 

Last-Modified: Tue, 15 Nov 1994 12:45:26 GMT 

3.2.33 Location 

Servers use the Location header to redirect clients to a new 
uri for a resource. The most common use of Location is in 
responses with 3xx status codes, but a server might also use 
Location in a 201 Created response. In that case, the 
header would tell a client where it could retrieve a copy of a 
resource that it just sent to the server using a PUT method. 

Figure 3.20 shows the typical operation of a Location 
header. In step 1, the client sends a standard GET request to 
server a. That server doesn’t have the resource, but it does 
know where the resource may be found. In its reply, there-
fore, server a returns a status code of 302 Found, and it in-
cludes a Location header. The value of the Location header 
is a full uri for the resource. The client uses this information 
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to reissue the request to the indicated server, which, in step 4, 
finally returns the resource. 

The Location header is quite different from the Content-
Location header, despite the similarity in their names. 
When a server includes a Content-Location header, it tells 
the client where a resource came from; a Location header, in 
contrast, tells the client where a resource is now located. 

3.2.34 Max-Forwards 

The Max-Forwards header, along with the OPTIONS and 
TRACE methods, helps clients fix problems that prevent them 
from getting any response from a server. There are two 
classes of problems that can be particularly difficult to diag-
nose without the Max-Forwards header—failed intermediar-
ies and request looping. 

Figure 3.21 shows the situation when an intermediary fails. In 
the figure, proxy server b receives the request in step 2, but it 
fails to forward the request on to the origin server. The situa-
tion is particularly vexing for the client. The client is com-
municating directly with proxy a and can probably verify 
that proxy a is working fine. The client may even be able to 
verify that the origin server is working correctly (by calling 

Server A

4

1 GET URI

200 OK Server B

Client

2
302 Found
Location: http://www.serverB.com/page.html

3

GET /page.html

 

Figure 3.20 �
The Location header gives the client a

new Uniform Resource Identifier for
an object. If appropriate, the client

may request the object from that
location. In this example server A tells

the client to retrieve the object from
server B.
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the server’s technical support, for example). Somehow the 
request doesn’t make it all the way to the origin server, 
though. 

Request looping also prevents the client from receiving any 
response, but it’s even more harmful to the network as a 
whole. When looping occurs, requests circulate among proxy 
servers indefinitely, tying up network and server resources. 
Figure 3.22 illustrates this problem. Instead of reaching the 
origin server, the client’s request continuously passes among 
the three proxy servers. This condition is not necessarily the 

Client Proxy A Proxy B Origin Server

1 GET URI 2 GET URI

Proxy C

3

GET URI4

GET URI

5 GET URI

6

7

8

...

 

Client Proxy Server A Proxy Server B Origin
Server

1 GET URI 2 GET URI

Proxy B fails
to forward

request

 

� Figure 3.22 
Loops can develop when proxies 
circulate a request among 
themselves without ever delivering 
it to the origin server. This is 
another error that prevents a client 
from receiving any response. 

� Figure 3.21 
If a proxy server fails to forward a 
request, the client will never receive 
any response. 
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fault of any particular proxy. Proxy a, for example, may le-
gitimately believe the next best hop for the request is proxy 
b, who may equally legitimately believe it should be passed to 
proxy c, who may, in turn, legitimately forward the request to 
proxy a again, thus creating the cycle. (If proxy a is inserting 
Via headers correctly, however, it should be able to detect the 
problem.) 

In the cases of both figure 3.21 and figure 3.22, the client 
never receives a response to its request, and as long as the 
failure mode persists, the client will never get a response, 
even by repeating the request. When that happens, a client 
can call on the TRACE method, along with the Max-Forwards 
and Via headers. 

The Max-Forwards header limits the number of intermedi-
ate systems through which a request may pass. The client (or 
even an intermediate proxy server) sets it to an initial value, 
and subsequent proxy servers that receive the request decre-
ment it before passing it on. If an intermediate server re-
ceives a request with Max-Forwards set to zero, it must not 
forward the request any further. Instead, it responds as if it 
were the origin server. 

Here’s how the client could detect the request loop of figure 
3.22. It starts by sending a TRACE method with Max-

Forwards to zero. As figure 3.23 shows, the first proxy server 
detects the Max-Forwards value and, instead of forwarding 
the request, responds with a 200 OK. 

When the client gets a response from proxy a, it sends an-
other TRACE, this time with Max-Forwards set to 1. Figure 
3.24 documents what happens this time. Proxy a accepts the 
request, decrements the Max-Forwards header value, and 
sends it on to proxy b. As the figure indicates, proxy a also 
inserts its identity in the request with the Via header. Sec-
tion 3.2.50 has a detailed description of the Via header; for 
our purposes now it’s important only to note that every in-
termediate proxy in a request or response inserts its own 
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identity in each message. When, in step 4, the message 
reaches proxy b, the Max-Forwards header prevents proxy b 
from sending it any further. Instead, proxy b returns its own 
response to the client. 

Client Proxy A Proxy B Origin
Server

3

TRACE
Max-Forwards: 1

Proxy C

6

4

TRACE
Max-Forwards: 0
Via: 1.1 proxyA

5

200 OK
Content-Type: message/http

TRACE http://server/ HTTP/1.1
Max-Forwards: 0
Via: 1.1 proxyA, 1.1 proxyB

200 OK
Content-Type: message/http
Via: 1.1 proxyA

TRACE http://server/ HTTP/1.1
Max-Forwards: 0
Via: 1.1 proxyA, 1.1 proxyB

 

Client Proxy A Proxy B Origin
Server

1

TRACE
Max-Forwards: 0

Proxy C

2200 OK
Content-Type: message/http

 

� Figure 3.24 
When a proxy receives a request 
with Max-Forwards set to zero, it 
responds to the request itself 
instead of relaying it toward the 
origin server. In this example proxy 
B does not forward the request but 
responds directly. The message 
body in the response is a copy of 
the request that proxy B received. 

� Figure 3.23 
The Max-Forwards header limits the 
number of proxies through which a 
request may pass. Once it reaches 
zero, the request travels no further. 
The proxy that responds to the 
TRACE request returns the original 
message itself in the message body 
of its response. 
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Figure 3.24 breaks with our normal convention by showing 
full http messages in steps 5 and 6. These steps show the 
response from proxy b as it travels back to the client. When 
the client receives the response in step 6, it gains important 
new information about the problem. It now knows (from the 
message body) that the next hop after proxy a is proxy b. 

The client continues probing the path in this way. With each 
request it increases the initial Max-Forwards value by one. 
Eventually it receives the response of step 20 in figure 3.25. 
And this response allows the client to detect the loop. From 
the Via header in the message body, the client can see that 
the request passed through proxy a twice, and thus it is stuck 
in a loop. 

Clients can use a similar process to detect intermediate 
server failures. They start with a Max-Forwards value of zero 
and increment it each time they get a response to the TRACE 
request. When no response arrives, the client knows where 
the request fails. 

Client

13

Proxy A Proxy B Origin
Server

TRACE
Max-Forwards: 3

Proxy C

TRACE
Max-Forwards: 2
Via: 1.1 proxyA

200 OK
Content-Type: message/http
Via: 1.1 proxyC, 1.1 proxyB,
  1.1 proxyA

TRACE http://server/ HTTP/1.1
Max-Forwards: 0
Via: 1.1 proxyA, 1.1 proxyB,
  1.1 proxyC, 1.1 proxyA

14

15

TRACE
Max-Forwards: 1
Via: 1.1 proxyA,
   1.1 proxyB

16

20
17

18

19 200 OK

 

Figure 3.25 �
The Max-Forwards header can limit

the looping of a request. Each proxy
decrements the header’s value as it

passes through, until the value
reaches zero. In this example Max-
Forwards is zero when the request

reaches proxy A the second time (at
step 16). At that point proxy A

responds to the request rather than
relaying it further.
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3.2.35 Meter 

Like the Cache-Control header we saw before, the Meter 
header supports several different options known as directives. 
Caching proxy servers and origin servers use these directives 
to report the cached page views and to limit the caching of 
resources, as section 2.4.5 explains. This metering process 
occurs in three phases. First, the proxy advertises its willing-
ness to support metering in the initial request. Second, the 
origin server asks for specific metering services in its re-
sponse. And finally, the proxy actually reports usage in later 
requests for the same object. Table 3.9 lists the individual 
Meter directives, as well as the phase in which each is em-
ployed. As the table indicates, each directive has both a regu-
lar and a short form. 
 

Table 3.9 Meter Header Directives 

Directive Short Used In Use 

count=n/m c=n/m Later 

request 

Proxy server reports usage. 

do-report d Response Origin server asks proxy to pro-

vide reports. 

dont-report e Response Origin server tells proxy not to 

provide reports. 

max-reuses=n r=n Response Origin server specifies a limit for 

non-unique page views. 

max-uses=n u=n Response Origin server specifies a limit for 

unique page views. 

timeout=n t=n Response Origin server specifies the 

maximum time between re-

ports. 

will-report-and-

limit 

w Initial 

request 

Proxy can support metering. 

wont-ask n Response Origin server indicates it will 

not ask for metering of any 

objects. 
continues… 
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Table 3.9 Meter Header Directives (continued) 

Directive Short Used In Use 

wont-limit y Initial 

request 

Proxy understands metering, 

but won’t limit usage. 

wont-report x Initial 

request 

Proxy understands metering, 

but won’t report usage. 

The metering process begins when a request passes through 
a proxy server. If the proxy server is willing to support meter-
ing, it adds a Meter header to the request. In the header, the 
proxy can identify the type of support it is offering with the 
will-report-and-limit, wont-limit, or wont-report 

directive. Without any specific directive, the default is to 
both report and limit. The proxy must also add a Connec-
tion: Meter header to the request, as the Meter header 
must be limited to the immediate connection. In fact, if the 
proxy is content with the default case (supporting both re-
porting and limiting), it need include only the Connection 
header, as Connection: Meter implies the presence of the 
Meter header. 

GET / HTTP/1.1 
Via: proxy 
Connection: Meter 
 

When the server responds to this request, it provides guid-
ance to the proxy with a Meter header in the response. That 
header may include a series of directives. It can tell the proxy 
whether the server wants to receive reports (do-report or 
dont-report); it can specify the maximum number of times 
the proxy should return the response from its cache (max-
uses and max-reuses), and it can specify a time limit before 
which the proxy should send a new report (timeout=n). 
Note that, unlike many http header values, the Meter: 
timeout=n specifies minutes, not seconds. In the example 
below, the origin server asks the proxy to provide reports at 
least as often as every hour. The response also specifies no 
limits. If the server wants to tell the proxy not to send it any 
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more Meter headers, it can use the wont-ask directive in its 
own Meter header. 

HTTP/1.1 200 OK 
Date: Sun, 08 Oct 2000 18:46:12 GMT 
Meter: do-report, timeout=60 
Connection: Meter 
 
... 

When the proxy sees the server’s response and caches the 
message body, it begins counting the number of times it re-
turns the object from its cache. It should count both the 
number of unique page views (requests from new users) and 
the number of non-unique page views (re-requests from the 
same user). Proxies consider any response in which they ac-
tually return the object (with a 200 OK status, in other 
words) as a unique page view and any response that simply 
confirms the client’s previously stored copy (a 304 Not 

Modified status) as a non-unique page view. Whenever ei-
ther of these counts reaches the maximum specified by the 
origin server, the proxy revalidates the object with the origin 
server before returning it to a client. 

As the proxy server continues to receive requests for the 
cached object, it must determine when to send a usage report 
to the origin. The proxy sends this report whenever it must 
send or forward a conditional GET or HEAD to the origin 
server, whenever the origin server’s time limit expires, or 
whenever the proxy removes the object from its cache. The 
report consists of a Meter header with a count directive. The 
two count values are the number of uses and the number of 
reuses. The example below reports 934 uses and 201 reuses. 

GET / HTTP/1.1 
Via: proxy 
Meter: count=934/201 
Connection: Meter 
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3.2.36 Pragma 

The Pragma header is a holdover from earlier versions of 
http. With http version 1.1, there is only one format for 
this header; it is illustrated in the following fragment. 

Pragma: no-cache 

Officially, this header is intended as a way for clients to indi-
cate that they do not want any intermediate servers to reply 
to the request with a cached response. Instead, they’re asking 
proxies to forward the request all the way to the origin server. 
In practice, many servers include Pragma: no-cache in their 
responses as a way to tell intermediate servers not to save the 
response in their caches. This behavior is so common that 
many cache servers honor it, even though it has never been 
standardized. Servers are cautioned, however, not to assume 
that all intermediate servers will accept the header. A safer 
alternative for origin servers that don’t want their response 
cached is to include an Expires header with a date in the 
past. 

At some point in the future all intermediate systems will be 
compliant with http version 1.1. At that time, servers and 
clients can both use the Cache-Control: no-cache header, 
which is http 1.1’s preferred method of controlling caching. 

3.2.37 Proxy-Authenticate 

The Proxy-Authenticate header lets intermediate proxy 
servers authenticate a client. By including this header in a 
response, the proxy asks the client to reissue the request but 
to include its authorization credentials. Proxy servers must 
always include Proxy-Authenticate in any response with a 
407 Proxy Authentication Required status. In operation, 
Proxy-Authenticate is similar to WWW-Authenticate, ex-
cept that it is generated by proxy servers rather than origin 
servers. Both proxy and origin server authentication tech-
niques are discussed in more detail in section 4.1. 
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3.2.38 Proxy-Authorization 

A client responds to a proxy server’s demand for authentica-
tion by including a Proxy-Authorization when it reissues 
its request. Section 4.1 describes the approach in detail. 

3.2.39 Range 

The Range header lets a client request part of a resource in-
stead of the entire object. As we first saw in section 3.2.5, the 
header takes the following form. In a request, this header 
asks for the second 500 bytes (byte number 500 through byte 
number 999, inclusive) and for the last 2 bytes of the re-
source. Note that http 1.1 numbers bytes starting with 0. 

Range: bytes 500-999, -2 

If a server is able to honor the client’s request, it returns a 
status code of 206 Partial Content. The server also in-
cludes the Content-Range header in its response. If the 
server cannot return the requested range but it can respond 
with the entire object, the server does so with a status of 200 
OK. Because of this rule, and because some servers may not 
understand the Range header, clients that use it should be 
prepared to receive the entire object in a response. 

3.2.40 Referer 

The Referer header (yes, it is misspelled) appears in client 
requests so the server can identify where the client obtained 
the uri in its request. As an example, look at the Web page 
of figure 3.26. That is the home page of the Internet 
Engineering Task Force, found at http://www.ietf.org. 

Notice that the page includes a link to the Web site for the 
Internet Assigned Numbers Authority (iana). The link ap-
pears at the bottom of figure 3.26, toward the right, and the 
html fragment for the link is the following. 

<A href="http://www.iana.org">IANA</A> 

http://www.ietf.org
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If the user clicks on the link, the browser issues an http GET 
request to www.iana.org. Because the link appears on the 
www.ietf.org page, the request will list the ietf’s page in the 
Referer header. Here is the actual http GET request. 

GET / HTTP/1.1 
Referer: http://www.ietf.org/ 
Accept-Language: en-us 
Accept-Encoding: gzip, deflate 
User-Agent: Mozilla/4.0 (compatible; 
            MSIE 5.5; Windows NT 5.0) 
Host: www.iana.org 
Connection: Keep-Alive 
 

 

Figure 3.26 �
When a user follows a Web page link,
such as this link to IANA, the browser

includes the Web address of the
referring page, www.ietf.org, in its

request for the new page.
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3.2.41 Retry-After 

Servers use the Retry-After header to tell a client when it 
should retry its request. The header can specify a date, so 
that the following header asks a client to wait until 1 January 
2001 to reissue its request. 

Retry-After: Sun, 31 Dec 2000 23:59:59 GMT 

The header can also simply indicate a number of seconds. 
The example below tells the client to wait 2 minutes (120 
seconds) before retrying. 

Retry-After: 120 

Servers can use this header with 503 Service Unavailable 
or with any of the 3xx status code responses. In the latter 
case, the client should delay its redirected request by the in-
dicated amount; there is no suggestion as to how long the 
client should wait before reissuing its request to the original 
server. 

3.2.42 Server 

With the Server header, an http server identifies the soft-
ware that it uses to implement http. This header is the 
server’s version of the User-Agent header. (See section 
3.2.48.) The following examples show some of the Server 
header values that can be found on the Web today. 

Server: Apache/1.3.6 (Unix)  (Red Hat/Linux) 
 

Server: IBM-Planetwide/10.45 
        Domino-Go-Webserver/4.6 
 

Server: Microsoft-IIS/5.0 
 

Server: NaviServer/2.0 AOLserver/2.3.3 
 

Server: Netscape-Enterprise/3.6 SP3 
 

Server: Xitami 
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3.2.43 Set-Cookie2 

The Set-Cookie2 header is a slightly updated form of the 
Set-Cookie header from http version 1.0. Both headers are 
used by servers to initiate http state management with a 
client. (See section 2.5.) By including a Set-Cookie2 header 
in its response, a server provides a state management cookie 
to the client, and it implicitly asks the client to return that 
cookie in subsequent requests to the server. 

The header begins by giving the cookie a name and a value, 
and then it may provide any of the attributes listed in table 
2.1. An example header with all possible attributes follows. 

Set-Cookie2: NAME="VALUE"; 
    Comment="Shopping Cart"; 
    CommentURL="http://merchant.com/cookies.html"; 
    Discard; Max-Age="300"; Path="/shopping"; 
    Port="443"; Secure; Version="1" 

Section 2.5 describes the state management process, includ-
ing the interpretation of the various attributes and the rules 
clients and servers must follow when using cookies. 

3.2.44 TE 

The TE header tells a server which transfer encodings the 
client can accept in a response, and it can indicate the client’s 
relative preferences for those transfer encodings. This header 
is very similar to the Accept-Encoding header, except that it 
applies to transfer encodings rather than content encodings. 

The format for the TE header is very similar to that for the 
Accept-Encoding header. The header value is a comma-
separated list of transfer encoding names, each with an 
optional quality factor. For example, the following header 
indicates that the client can accept gzip and deflate transfer 
encodings, but it prefers gzip because that has a higher 
quality factor. (As with other headers, if the client doesn’t 
explicitly indicate a quality factor for a particular option, the 
server assumes a value of 1.0.) 
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TE: gzip, deflate;q=0.9 

In addition to the standard transfer encodings, the TE header 
defines a special value to identify the chunked transfer en-
coding with trailer fields. That value is simply trailers, as in 
the following example. Note that there is no need for a client 
to list the chunked transfer encoding itself in a TE header, as 
all http 1.1 clients must be prepared to accept the chunked 
transfer encoding. The use of trailer fields with chunked en-
coding, however, is optional; this header value lets a client 
advertise that it understands that format. 

TE: trailers 

3.2.45 Trailer 

Clients and servers may include the Trailer header when 
they use the chunked transfer encoding for the message 
body. This header lists any other http headers that appear 
after the message body, rather than in the normal position 
before the body. It tells the recipient which http headers it 
can expect in the chunked transfer encoding’s trailer. There 
are three http header fields that cannot appear in a chunked 
trailer: Transfer-Encoding, Content-Length, and Trailer. 
These fields, therefore, cannot appear in the Trailer header. 

The following example shows a sample response with the 
Trailer header. The response uses the chunked transfer en-
coding, and the Trailer header lists Expires. As expected, 
the Expires “header” then appears after the message body. 

HTTP/1.1 200 OK 
Date: Fri, 31 Dec 1999 23:59:59 GMT 
Content-Type: text/plain 
Transfer-Encoding: chunked 
Trailer: Expires 
 
1a 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
0 
Expires: Sat, 01 Jan 2000 23:59:50 GMT 
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3.2.46 Transfer-Encoding 

The Transfer-Encoding header identifies the transfer en-
coding format of a message body. Although the http 1.1 
specifications define this header in a general way, current 
implementations use it almost exclusively to identity the 
chunked transfer encoding. 

Transfer-Encoding: chunked 

The developers of http 1.1 created the chunked transfer en-
coding to improve the performance of http servers. With 
this feature, servers can begin sending a response while 
they’re composing it; without chunked encoding, on the 
other hand, they’re forced to delay responding until the en-
tire message is complete. 

The issue arises because http 1.1 servers must indicate the 
size of their response messages. That wasn’t the case with 
earlier versions of http. Before http 1.1, servers could just 
send their response and then close the tcp connection. A 
client could tell that it had received the full response when 
the connection closed. With http 1.1, though, persistent 
connections are the default behavior, and closing the connec-
tion after every response makes persistent connections im-
possible. Clients still need some way to know when they’ve 
received all of a message, however. The Content-Length 
header is the simplest solution to this problem. When the 
server includes a Content-Length header in a response, the 
client merely needs to count bytes to know when it has the 
complete response. 

Although simple and easy to use, the Content-Length 
header introduces its own problem. As an http header, 
Content-Length is one of the first parts of a response. In 
particular, it precedes the message body. But before a server 
can calculate the value for Content-Length, it must know 
the full size of the message body. This restriction means that 
before a server can begin sending a response, it must 
compose the full message body and calculate its size. When 



HTTP Messages 109 

 

the message body is large, and when the server constructs the 
message dynamically, the resulting delay can significantly 
degrade the server’s performance. 

A more efficient approach would allow the server to begin 
sending its response as soon as it began composing the mes-
sage body. As the server creates additional parts of the re-
sponse message, it immediately sends them to the client. 
This approach is exactly what chunked transfer enables. 

With chunked transfer encoding, the server divides the mes-
sage body into one or more chunks. In its response, the server 
sends each of these chunks, one after the other. Each chunk 
is preceded by a line that indicates the chunk size in hexa-
decimal. The last chunk has a size of zero bytes. Here is an 
example of a response message with three chunks. (The third 
chunk has a size of 0, so only the first two chunks contain 
any content.) The total size of the message body is 36 bytes. 
(The first chunk is 1a16, or 26 bytes; the second adds 0a16, or 
10, more.) 

HTTP/1.1 200 OK 
Date: Fri, 31 Dec 1999 23:59:59 GMT 
Content-Type: text/plain 
Transfer-Encoding: chunked 
 
1a 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
0a 
0123456789 
0 
 

For comparison, here is how the same message body could be 
conveyed without chunked transfer encoding. 

HTTP/1.1 200 OK 
Date: Fri, 31 Dec 1999 23:59:59 GMT 
Content-Type: text/plain 
Content-Length: 36 
 
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 
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3.2.47 Upgrade 

The Upgrade header lets a client and server gracefully nego-
tiate an upgrade to a different communications protocol. The 
new protocol may be a newer version of http or a com-
pletely different protocol such as Transport Layer Security. 
(Section 4.3.3 describes how tls can use Upgrade.) The cli-
ent proposes the protocol upgrade by including an Upgrade 
header in its request. 

GET http://www.bank.com/acct.html?749394889300 
HTTP/1.1 
Host: www.bank.com 
Upgrade: TLS/1.0 
Connection: Upgrade 
 

The server can respond to this request with a 101 Switch-
ing Protocols status, and it includes its own Upgrade 
header. 

HTTP/1.1 101 Switching Protocols 
Upgrade: TLS/1.0, HTTP/1.1 
Connection: Upgrade 

Notice that both the request and response also include the 
Connection: Upgrade header. This header must always ap-
pear when Upgrade is used because any upgrade applies only 
to the immediate connection between the client and the first 
server. If a client wants to upgrade its communications with 
an origin server, it can use the CONNECT method to establish a 
virtual connection with that server and then upgrade that 
virtual connection. 

The example also shows that the 101 Switching Proto-
cols response lists a series of protocols in the Upgrade 
header. In that response, the server indicates that it is up-
grading to http 1.1 over tls 1.0. 

3.2.48 User-Agent 

The User-Agent header is the client’s version of the Server 
header. With User-Agent, a client identifies the specific 
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http implementation it is using. For example, the following 
is how Netscape Navigator on an Apple Macintosh identifies 
itself. 

User-Agent: Mozilla/4.x (Macintosh) 

The Web site http://browserwatch.internet.com keeps track 
of the different client implementations accessing its pages. 
Recently, it had detected 213 variations of Microsoft’s Inter-
net Explorer, 65 variations of Netscape’s Navigator, and 510 
other http clients. 

3.2.49 Vary 

With the Vary header origin servers give proxy servers extra 
guidance in the management of their local caches. The Vary 
header lists other http headers that, in addition to the uri, 
determine which resource the server returns in its response. 
For example, some origin servers may return different re-
sources depending on the User-Agent value in the client’s 
request. (They may have one page optimized for Microsoft’s 
Internet Explorer and a different page for Netscape Naviga-
tor.) In such cases the server should include a Vary header in 
its response. 

HTTP/1.1 200 OK 
Date: Fri, 31 Dec 1999 23:59:59 GMT 
Content-Type: text/html 
Vary: User-Agent 
 
... 

A proxy server will then know that it can return a cached 
copy of this response to subsequent requests, but only if 
those requests have the same User-Agent value as the origi-
nal request. A different User-Agent value forces the cache to 
query the origin server again. 

An asterisk as the value for the Vary header indicates that 
parameters other than http headers also influenced the con-
tent of the response, effectively marking the response as not 
cachable. 

http://browserwatch.internet.com
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3.2.50 Via 

The Via header traces the path of a message as it travels 
through proxy servers. The http specifications require that 
every intermediate server that handles a request or response 
identify itself with a Via header before forwarding the mes-
sage. A proxy can add its own Via header or simply build on 
an existing one. Figure 3.27 shows how the Via header grows 
as a request travels from client to origin server. 

The first proxy server creates a Via header and adds its own 
identity as the value. (Although the figure shows this iden-
tity as proxyA, the server would normally use a full domain 
name.) The 1.1 that precedes the server name is the http 
version that was in force when the server received the re-
quest. When the request passes through proxy b, that proxy 
doesn’t add a completely new Via header (though it could do 
so if desired). Instead, it simply appends its own name to the 
existing Via header. Proxy b also includes an http version 
immediately before its name. 

It is important that proxy servers create or adjust the Via 
header before they perform any other processing of the mes-
sage. For example, a proxy may receive a TRACE request with 
Max-Forwards of 0, indicating that the proxy cannot forward 
the request any further. That is the case for proxy b in figure 
3.28. Before proxy b responds to the TRACE request, however, 
it must insert its identity in the Via header. After doing so, it 
generates the response of step 3. Only by adjusting the Via 

Client Proxy A Proxy B Origin
Server

1 GET URI 2 GET URI
Via: 1.1 proxyA

3
GET URI
Via: 1.1 proxyA,
    1.1 proxyB

 

Figure 3.27 �
The Via header records the path of an
HTTP message as it travels through a
network of proxy servers. The servers
also indicate the HTTP version under

which they accepted the message.
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header before processing the request is proxy b able to ensure 
that its identity appears in the TRACE response. 

3.2.51 Warning 

The Warning header carries additional information about a 
response, usually intended to alert the user to potential cache 
problems. Its format is as follows, though the date is op-
tional. A Warning header may include many individual 
warnings, each separated by a comma. 

Warning: 110 proxy.com "Response is stale" 
         Fri, 31 Dec 1999 23:59:59 GMT 

The first field is a warning code, and the next field identifies 
the server that created the warning. The quoted string is a 
natural language explanation of the warning, appropriate for 
human users. The optional final field carries the time of the 
warning. 

Client Proxy A Proxy B Origin
Server

34

1
TRACE URI
Max-Forwards: 1

2
TRACE URI
Max-Forwards: 0
Via: 1.1 proxyA

200 OK
Content-Type: message/http

TRACE http://server/ HTTP/1.1
Max-Forwards: 0
Via: 1.1 proxyA, 1.1 proxyB

200 OK
Content-Type: message/http
Via: 1.1 proxyA

TRACE http://server/ HTTP/1.1
Max-Forwards: 0
Via: 1.1 proxyA, 1.1 proxyB  

� Figure 3.28 
A client can discover the path its 
messages are taking looking for 
Via headers in a TRACE response 
message. Note that proxy B 
updates the Via header, by 
inserting its own identity, before 
it responds to the request. 
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Just as http 1.1 defines a series of status codes, it also defines 
warning codes (though the list is much smaller). Table 3.10 
lists those codes, along with suggested explanation text. 

Table 3.10 HTTP 1.1 Warning Codes 

Code Explanation Meaning 

110 Response is stale The proxy returned an expired object 

in its response (perhaps because the 

client used the max-stale cache 

directive). 

111 Revalidation failed The proxy could not verify that the 

object is still valid (perhaps because it 

could not contact the origin server). 

112 Disconnection operation The proxy has been intentionally dis-

connected from the network. 

113 Heuristic expiration The proxy has made a guess that the 

object is still valid, but the object is 

more than 24 hours old. 

199 Miscellaneous warning An arbitrary warning. 

214 Transformation applied The proxy has modified the object in 

some way (perhaps by changing its 

image format to save cache space). 

299 Miscellaneous persistent 

warning 

An arbitrary warning that may con-

tinue to recur. 

When a proxy receives a Warning header with a date that 
differs from the Date header in the response, the proxy de-
letes that particular warning from the header. If that leaves 
the Warning header with no warnings, the proxy also re-
moves the Warning header. This behavior ensures that warn-
ings are not propagated inappropriately through a network of 
cache servers. Without it, an object might get “stuck” with an 
inappropriate warning. 

3.2.52 WWW-Authenticate 

The WWW-Authenticate header lets origin servers authenti-
cate a client. By including this header in a response (usually 
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one with a 401 Unauthorized status), the server asks the 
client to reissue the request but to include its authorization 
credentials. The subject of http authentication is worthy of 
its own chapter, and indeed, it is the topic of section 4.1, 
which examines WWW-Authenticate in detail. 

3.3 Status Codes 

As we’ve seen in many examples, an important part of every 
http response is the status code. That code defines whether 
a client’s request succeeded and can provide additional in-
formation about the request’s outcome. Every status code 
value is a three-digit number, and the http specification 
classifies status codes based on the first digit of these values. 
Status codes provide information (100-199), indicate success 
(200-299), redirect a client (300-399), indicate a client error 
(400-499), or indicate a server problem (500-599). In each 
class, the x00 status code is the master status for the class. If 
a client receives a status code value that it does not under-
stand, it can safely treat it the same as it would treat the x00 
value in the class. For example, a status code value of 237 
should be treated the same as 200. 

Table 3.11 provides a complete list of all status codes that 
http defines, grouped by their class. We’ll look at each code 
in more detail throughout this section. 

Table 3.11 HTTP Status Codes 

Class Code Description 

1xx  Informational 

 100 Continue 

 101 Switching Protocols 

2xx  Successful 

 200 OK 

 201 Created 

 202 Accepted 
continues… 
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Table 3.11 HTTP Status Codes (continued) 

Class Code Description 

 203 Non-Authoritative Information 

 204 No Content 

 205 Reset Content 

 206 Partial Content 

3xx  Redirection 

 300 Multiple Choices 

 301 Moved Permanently 

 302 Found 

 303 See Other 

 304 Not Modified 

 305 Use Proxy 

 306 (unused) 

 307 Temporary Redirect 

4xx  Client Error 

 400 Bad Request 

 401 Unauthorized 

 402 Payment Required 

 403 Forbidden 

 404 Not Found 

 405 Method Not Allowed 

 406 Not Acceptable 

 407 Proxy Authentication Required 

 408 Request Timeout 

 409 Conflict 

 410 Gone 

 411 Length Required 

 412 Precondition Failed 

 413 Request Entity Too Large 

 414 Request-URI Too Long 

 415 Unsupported Media Type 
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Table 3.11 continued 

Class Code Description 

 416 Requested Range Not Satisfiable 

 417 Expectation Failed 

 426 Upgrade Required 

5xx  Server Error 

 500 Internal Server Error 

 501 Not Implemented 

 502 Bad Gateway 

 503 Service Unavailable 

 504 Gateway Timeout 

 505 Version Not Supported 

3.3.1 Informational (1xx) 

Status codes in the range from 100 to 199 are provisional. 
They give the server a way to provide some feedback to the 
client, even though the server hasn’t yet finished its response. 

100 Continue 

The 100 Continue status code is part of a process that lets 
clients “test the waters” with a server. This ability may be 
important, for example, if the client has a large message body 
and it wants to make sure the server can accept it before go-
ing to the trouble of sending it. There may also be circum-
stances in which it might be inappropriate to send the 
message body without knowing the server can receive it. 

As an example, suppose a client has a large file that it wants 
to PUT to a server. The client may be able to use the con-
tinuation mechanism to avoid wasting network resources. To 
do that, the client begins its request with normal http mes-
sage headers. To trigger continuation, it includes the Ex-
pect: 100-continue header in that message. Importantly, 
though, the client does not (yet) send the message body. This 
is step 1 in figure 3.29. 
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If, after seeing the request’s headers, the server decides that it 
can accept the request, the server responds with a 100 Con-
tinue status, as in step 2. This interim response tells the cli-
ent to proceed with its request, so it sends the message body 
in step 3. The server completes the exchange with the 200 
OK response of step 4. 

If, in step 2, the server realizes that it cannot accept the re-
quest, it responds with a different status code. A server might 
require authentication (necessitating a 401 Unauthorized 
response), or, after seeing the Content-Length value, the 
server might recognize that it doesn’t have sufficient disk 
space to store the object (413 Request Entity Too Large). 

In order to cope with servers that don’t fully support the 
continuation mechanism, any client that sends an Expect: 
100-continue header should not wait indefinitely for a 100 
Continue response. If the server has not responded at all 
after some reasonable period of time, the client should pro-
ceed with its request anyway. 

101 Switching Protocols 

Servers use the 101 Switching Protocols response to ac-
cept a client’s request to upgrade protocols. In figure 3.30, for 
example, the client requests an upgrade to Transport Layer 
Security by including the Upgrade: TLS/1.0 header in its 

Client Server

2

1
PUT URI
Expect: 100-contine

100 Continue

3
message
body

4200 OK  

Figure 3.29 �
Clients can ask a server to accept a

request before they send the entire
message body. The Expect header

asks the server to signal its
acceptance by returning a 100

status. Once the client receives a
100 status, it continues by sending

the rest of the request.
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request. The server accepts the upgrade in step 2 with a 101 
Switching Protocols interim status, and, in step 3, the ex-
change continues using the new protocol. 

3.3.2 Successful (2xx) 

Status codes that begin with a 2 represent success. With 
these responses, the server tells the client that its request was 
received, understood, and accepted. 

200 OK 

The 200 OK status code is the most basic http response. It 
simply says that the client’s request succeeded. Depending on 
the request method, the response is likely to include addi-
tional information. For example, in responding successfully 
to a GET request, the server includes the requested resource in 
the message body. With a HEAD request, however, the server 
returns only the response headers, including any entity head-
ers that would apply to the requested resource; the message 
body itself, however, is omitted. 

201 Created 

Servers reply with a 201 Created status when a successful 
request results in the creation of a new resource. The Loca-
tion header in the response provides a definitive uri for the 
new resource, but the server may include other representa-
tions of the resource or its location in the response’s message 
body. 

Client Server

2

1
OPTIONS
Upgrade: TLS/1.0

101 Switching Protocols

3 new protocol

 

� Figure 3.30 
The 101 status indicates that the 
sender is going to change 
protocols. The client should being 
using the new protocol as soon as it 
receives the 101 response. 
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202 Accepted 

With a 202 Accepted status code, a server tells the client 
that it has accepted the request, but not yet fulfilled it. The 
server may have, for example, scheduled a process to com-
plete the request later. A server that sends this response may 
include in the message body some indication of how the cli-
ent can learn the final status of the request. If there’s a uri 
that the client can use to check on the request status, for ex-
ample, the server may include that uri in the response. 

203 Non-Authoritative Information 

The 203 Non-Authoritative Information status code 
indicates that some of the response’s headers may not be de-
finitive. They may have, instead, been created by an interme-
diate server. The message body itself, however, is completely 
valid. 

204 No Content 

The 204 No Content status indicates that the server ac-
cepted the request, but it does not need to return any infor-
mation to the client in response. This type of response is 
valuable in many dynamic and interactive Web sessions. 
Consider figure 3.31, for example, which shows a browser-
based user interface for a telecommunications server. The 
mouse pointer is hovering over a checkbox (in the bottom 
left of the screen) that lets the user disable automatic updat-
ing of the display. 

If the user clicks on the checkbox, the browser may need to 
send an http request to the server, and the most likely can-
didate is a GET or POST method. Normally, however, a server 
would respond to a GET or POST request by sending the indi-
cated resource, and the browser accepts the resource and dis-
plays it for the user. In this case the user should see the same 
page after clicking the checkbox, only the checkbox state will 
now be disabled. But that means that the server must send 
the entire Web page again, including its complex tables and 
graphic images. That’s neither necessary (because the 
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browser already has all the information it needs to display 
the page) nor efficient. 

A better approach would have the server respond to the re-
quest with a 204 No Content status. That tells the client 
that its request was successful, but there is no new informa-
tion available. The browser can continue to display the exist-
ing Web page (though with a new checkbox status), saving 
time, bandwidth, and server resources. 

205 Reset Content 

The 205 Reset Content status is similar to the 204 No 
Content. In both cases the response does not contain any 

 

� Figure 3.31 
If a server just needs to acknowledge 
a client’s request without actually 
sending the client new information, it 
can return a 204 status. In this 
example the browser already has all 
the information it needs to update the 
display if the user clicks the checkbox; 
a 204 response avoids having to send 
the full Web page again. 
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message body. With a 205 Reset Content, however, the 
server directs the client to reset the document view that gen-
erated the request. Typically that’s equivalent to the user 
clicking a Reset button on a Web form. 

206 Partial Content 

Servers that respond to a request for a subset of a resource (a 
request with a Range header) use the 206 Partial Content 
status when they accept the request and return only the re-
quested subset. The response also includes a Content-Range 
header to identify which parts of the resource are present in 
the response’s message. 

3.3.3 Redirection (3xx) 

Status codes from 300 to 399 tell the client that it needs to 
take further action to fulfill its request. Specifically, the 
server asks the client to reissue its request, but for a different 
uri. If there is only one alternative location available, or if 
the server has a preference for one particular location among 
the alternatives, the server includes the uri for that location 
in the Location header. Other alternatives may be listed in 
the message body. 

If the client’s original request was a GET or HEAD, the client 
can safely reissue the request to the indicated uri automati-
cally, without consulting the user. With other requests, how-
ever, there may be security implications, and the client 
should first ask permission from the user. 

300 Multiple Choices 

The 300 Multiple Choices status gives the client a list of 
alternative locations for the request. The server provides 
these in the response’s message body, and it may include one 
in a Location header. 

301 Moved Permanently 

When a resource’s uri has changed permanently, the server 
may respond with a 301 Moved Permanently status. The 



HTTP Messages 123 

 

client (and any proxies) should, henceforth, use the indicated 
uri for all future references to the resource. All of the other 
3xx status codes represent temporary conditions. 

302 Found 

The 302 Found status indicates that the resource has tempo-
rarily moved to a new location, and the client should reissue 
its request to the new uri. In practice, many clients that re-
ceive a 302 Found status will send a GET request to the new 
uri, even if the original request used another method. This 
behavior actually violates the http specifications, but it is so 
common that servers should take it into account. With ver-
sion 1.1, http introduced the 303 See Other and 307 Tem-
porary Redirect status codes to address this problem. 

303 See Other 

The 303 See Other status is the http specification’s way of 
properly asking clients to do what many already do in reac-
tion to a 302 Found response—send a GET request to the 
indicated uri. The 303 See Other status is intended pri-
marily as a response to a POST request. After the client issues 
the POST, this response tells it where to get the next resource 
to display for the user. Consequently, the location indicated 
by a 303 See Other status is not a new location for the 
original resource. It is, rather, a reference to an entirely new 
resource. 

304 Not Modified 

If a request includes a condition (such as an If-Match or If-
Modified-Since header) and that condition is not met, the 
server responds with a 304 Not Modified status. Typically 
this allows the client (or proxy server that forwarded the re-
quest) to use a cached copy of the resource. 

305 Use Proxy 

The 305 Use Proxy status asks the client to reissue the re-
quest to a proxy server. Only origin servers should generate 
this status, and the status applies only to the initial request. 
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307 Temporary Redirect 

The 307 Temporary Redirect status officially means the 
same as a 302 Found status: The resource has temporarily 
moved to a new location, and the client should reissue its 
request there. In particular, the client should use the same 
request method. As noted previously, http 1.1 added this 
status code because so many clients react improperly to the 
302 Found status. 

3.3.4 Client Error (4xx) 

If a server encounters a problem with a client’s request, it can 
use one of the 4xx status codes in its response. The specific 
status code may provide more information about the prob-
lem the server detected. 

400 Bad Request 

The standard status code for client errors is 400 Bad Re-
quest. This response indicates that the server did not under-
stand the request, perhaps because there is an error in its 
formatting. The client should not reissue the same request, as 
it will be rejected as well. 

401 Unauthorized 

The 401 Unauthorized status code tells the client that the 
server requires user authentication before granting access to 
the resource. The server includes a WWW-Authenticate 
header in its response to give the client guidance on the type 
of authentication it requires. As section 4.1 explains, clients 
react to this status by reissuing the request with an appropri-
ate Authorization header. 

402 Payment Required 

Although the http specifications define this status code, it 
is currently just reserved for future use. Of course, its mean-
ing is fairly self-explanatory. It is much less clear, however, 
how a client should react to receiving it. 
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403 Forbidden 

A client that receives a 403 Forbidden status code has at-
tempted to access a resource that cannot be accessed. Unlike 
the case for a 401 Unauthorized status code, no Authori-
zation header will grant the client access. Servers should 
note that by returning a 403 Forbidden response, they im-
ply that the requested resource does, in fact, exist. If revealing 
this information is not appropriate, the server can use a 404 
Not Found status code instead. 

404 Not Found 

The 404 Not Found status code indicates that the requested 
resource does not exist. It does not give any information 
about whether this condition is permanent or temporary. If a 
server wishes to explicitly indicate a permanent condition, it 
may use the 410 Gone status instead. 

405 Method Not Allowed 

The 405 Method Not Allowed status tells the client that 
the method it used is not permitted with the referenced re-
source. Servers include an Allow header in their response to 
tell clients what methods are permitted. 

406 Not Acceptable 

When a server returns a 406 Not Acceptable status, the 
client’s request can generate only responses that the client 
has indicated are not acceptable. The message body of the 
response may indicate the entity characteristics that the re-
quest can generate. This status should appear only in re-
sponse to requests with Accept, Accept-Charset, Accept-
Encoding, or Accept-Language headers. 

407 Proxy Authentication Required 

The 407 Proxy Authentication Required tells a client 
that it must authenticate itself with a proxy server before its 
request can proceed. The proxy server that generates this re-
sponse includes a Proxy-Authenticate header to guide the 
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client in providing an appropriate Proxy-Authorization 
header in its reissued request.  

408 Request Timeout 

With the 408 Request Timeout status, a server indicates 
that it has timed out waiting for a request from the client. 

409 Conflict 

The 409 Conflict status indicates that the server could not 
complete the request because of a conflict with the current 
state of the resource. This conflict could arise, for example, 
when a PUT request includes changes to a resource that 
would conflict with changes already accepted by a third 
party. 

410 Gone 

The 410 Gone status indicates that a resource is no longer 
available. This condition should be considered permanent. 

411 Length Required 

When a server returns a 411 Length Required status, it 
refuses to accept a request unless the client reissues the re-
quest with a valid Content-Length header. 

412 Precondition Failed 

The 412 Precondition Failed status indicates that one of 
the conditions the client included in its request (through, for 
example, an If-Match header) did not apply. 

413 Request Entity Too Large 

The 413 Request Entity Too Large status indicates that 
the message body of a request was larger than the server 
could accept. If the server expects this condition to be tem-
porary, it can include a Retry-After header in its response. 

414 Request-URI Too Long 

If a client includes a uri in its request that is longer than the 
server is willing to interpret, the server can respond with a 
414 Request-URI Too Large status. 
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415 Unsupported Media Type 

By returning a 415 Unsupported Media Type status, a 
server indicates that it cannot understand the media type of 
the request’s message body. 

416 Requested Range Not Satisfiable 

When a client asks for a range of a resource (with the Range 
header) and the range is not valid, the server responds with a 
416 Requested Range Not Satisfiable status. 

417 Expectation Failed 

If a server cannot meet a client’s expectations as conveyed in 
a request’s Expect header, it returns a 417 Expectation 

Failed status. 

426 Upgrade Required 

The 426 Upgrade Required status lets a server tell a client 
that it must upgrade the application it’s using for the request. 
A server that wanted to force its client to upgrade to Trans-
port Level Security (tls), for example, would return this 
status along with an Upgrade header identifying tls as the 
required application upgrade. 

3.3.5 Server Error (5xx) 

In contrast to the 4xx status codes, which point to a client 
problem, the 5xx status codes indicate a problem on the 
server. 

500 Internal Server Error 

The 500 Internal Server Error status is a general indica-
tion of a server problem. If the server can provide further 
details, it may do so in the response’s message body. 

501 Not Implemented 

The 501 Not Implemented status indicates that the server 
does not support the request’s method for any resource, not 
just the resource requested. 
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502 Bad Gateway 

If a proxy server receives an invalid response from the server 
to whom it forwarded a request, it responds to the client 
with a 502 Bad Gateway status. 

503 Service Unavailable 

The 503 Service Unavailable status indicates that the 
server is temporarily unable to satisfy the request, perhaps 
because the server is currently overloaded or undergoing 
maintenance. The server may include a Retry-After header 
in its response if it anticipates that the problem will be cor-
rected by that time. 

504 Gateway Timeout 

When a proxy server times out waiting for a response from 
another server, it returns a 504 Gateway Timeout status to 
the client. 

505 Version Not Supported 

The 505 Version Not Supported status indicates that the 
server cannot support the http version identified in the cli-
ent’s request. 
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CHAPTER 4 

Securing HTTP — 
Adding Authentication & Privacy 
 

If the World Wide Web were nothing more than a linked 
collection of static information, then securing the Web’s pro-
tocols would be less important. With the growth of elec-
tronic commerce and the extension of http to critical 
environments outside of the Web, however, adding security 
to http is critical for many applications. Security allows the 
communicating parties to verify each other’s identity, to en-
sure the privacy of their communication, and to protect their 
messages from modification or corruption. 

This chapter looks at the various ways to add security to 
http. The first section, Web Authentication, details the pro-
cedures built into http 1.1. The second section introduces 
the Secure Sockets Layer (ssl) protocol. By far the most 
common way of providing security on the Web, ssl is a sepa-
rate protocol that adds security to many applications. It was 
designed, however, especially for http. The Transport Layer 
Security (tls) protocol is the most recent revision of ssl. It 
is very similar to ssl, but it includes a few additional features 
tailored for http communications. Finally, the chapter takes 
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a brief look at Secure-http (shttp). Originally developed 
about the same time as ssl, shttp defines extensions directly 
to the http protocol for security. shttp has largely been 
supplanted by ssl in actual operation, but a few implementa-
tions still exist. 

4.1 Web Authentication 

Although some sections of this chapter discusses securing 
http using additional protocols or extensions, http in-
cludes its own security mechanisms. The http security 
mechanisms are not as formidable as other approaches, but 
they are sufficiently secure for many applications. 

The security mechanisms built into http rely on user pass-
words for their security. That makes them relatively simple, 
but it is also the source of their weakness. User passwords are 
notoriously insecure, as human users often select passwords 
that are easy for adversaries to guess. Humans can also be 
rather careless about their passwords, reusing the same pass-
word for many systems, leaving passwords on a sticky note 
attached to their monitor, or revealing those passwords to an 
adversary posing as an administrator or other employee of a 
system. 

4.1.1 Basic Authentication 

The simplest form of http security is basic authentication. 
It allows a server to request a username and password from a 
client, and it defines how the client should send that infor-
mation to the server. Figure 4.1 shows the process. The client 
first sends its http request as usual. For its reply, however, 
the server responds with a status code of 401 Unauthorized. 
This status code tells the client that it must supply a user-
name and password. 

The 401 Unauthorized response includes the WWW-

Authenticate header, and for basic authentication the 

Caution: 

Basic Authentication 

Even though HTTP 1.1 defines the 

Basic Authentication mechanism, 

it does so very reluctantly. As we’ll 

see in this section, the security 

Basic Authentication offers is 

extremely weak security. Many, in 

fact, have argued that it is better 

to use no security at all than to 

rely on Basic Authentication. We 

cover it in this text because it is 

part of the specification, however, 

and because there are 

implementations that do use it. 

When given a choice, however, this 

author, along with the authors of 

the HTTP standard, strongly 

recommends against using Basic 

Authentication in any application. 
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header includes the challenge “Basic,” as well as a value for 
the challenge’s realm. One possible response from a server is 
as follows. 

HTTP/1.1 401 Unauthorized 
WWW-Authenticate: Basic 
     realm="users@hundredacrewoods.com" 
 

The server can choose any value it wants for the realm, but 
in Web browsing it is typical to use a value that human users 
can understand. That’s because Web browsers typically dis-
play the realm for the user when asking for the username and 
password. Figure 4.2 shows how a browser might query a 
user. 

Once the user supplies a username and password, the client 
can continue the communication with step 3 of figure 4.1. In 

Client Server
2

401 Unauthorized
WWW-Authenticate

1 GET URI

3
GET URI
Authorization

4200 OK

 

 

� Figure 4.1 
When a server wants a client to 
authenticate its user, the server 
returns a 401 status. The client can 
then reissue the request with 
appropriate information included in 
the Authorization header. 

� Figure 4.2 
Web browsers ask their users for 
authentication with a pop-up window 
like this. HTTP authorization is never 
part of a Web page itself, unlike the 
SSL-secured server authorization of 
figure 4.3. 
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that step it reissues the original request. This time, though, 
the client includes the Authorization header in its request. 
The Authorization header contains the username and pass-
word the user provides. 

To provide the username and password, the client combines 
the two, separated by a colon (:), and encodes them accord-
ing to the rules for Base64 encoding. By using the colon to 
separate usernames from passwords, http prohibits the 
username from itself containing a password. (Otherwise, the 
server would not be able to tell where the username ended 
and the password began.)  

Base64 encoding is a way to convert binary data and encode 
it using only the normal, printable characters. It was origi-
nally developed as a way to send email attachments. By en-
coding the username and password using Base64, http 
allows passwords to contain any arbitrary characters, not just 
those that are printable. The http specification does loosen 
one restriction on standard Base64 encoding. Strict Base64 
encoding requires a new line at least every 76 characters. In 
this case the encoded credentials must fit on a single line of 
text, no matter its length. Once a client has encoded the 
user’s credentials, it can construct a request such as the fol-
lowing example. 

GET /secret/honeypot.html HTTP/1.1 
Authorization: Basic QwxhZGRpbjpvcGVuIHNlc2FtZQ== 
 

When the server sees a valid username and password, it can 
finally return the requested object. Figure 4.1 shows that in 
step 4. 

After an http client successfully retrieves an object using 
Basic Authentication, the client may continue to include the 
Authorization header on subsequent requests to the same 
uri or to child uris. Doing so avoids the delay of forcing the 
server to return more 401 Unauthorized responses to 
prompt for the authorization information. 
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One of the more significant problems with Basic Authenti-
cation is that the username and password travel completely 
exposed across the network. Any intermediate party that can 
intercept or eavesdrop on the communication can recover the 
username and password. Because many public networks 
comprise the Internet, this vulnerability is a substantial one, 
and the http specification recommends that it be used only 
when the application’s security requirements are extremely 
minimal. The specification further cautions that, even if the 
information being secured is relatively unimportant, server 
administrators should consider a broader context when de-
ciding to use Basic Authentication. Many human users, for 
example, reuse the same username and password for many 
different systems. An adversary that intercepts a username 
and password from a relatively insecure Web site may be able 
to use that same combination for other, more valuable, sites. 

To address the lack of real security in http’s Basic Authenti-
cation, many Web sites create their own login process. Figure 
4.3 shows one such Web site. Here users are asked for their 
name and password via a Web form rather than http au-
thentication. Even though http is used to convey the form 
to the user and, via a POST method, return the user’s re-
sponse, http itself has no knowledge that an authentication 
process is active. As far as http is concerned, it is simply 
performing standard GET and POST actions. Note also the 
padlock icon in the extreme lower left corner of the browser’s 
window. That icon indicates that the data the user sends to 
the Web site will be encrypted using the facilities of the Se-
cure Sockets Layer (ssl) or Transport Layer Security (tls) 
protocol, both of which we’ll meet later in this chapter. With 
this protection usernames and passwords are immune to in-
terception and eavesdropping. 

4.1.2 Original Digest Authentication 

Digest Authentication addresses the major weaknesses of 
Basic Authentication, namely that usernames and passwords 
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are vulnerable to interception. The Digest Authentication 
process was initially defined as an extension to http version 
1.0. An improved version has been developed as an extension 
to http version 1.1. Because the Digest Authentication pro-
cedures are defined in separate specifications, however, it is 
possible to use the original version even in http 1.1 imple-
mentations. For that reason, it is important to understand 
both versions. In this subsection we focus on the initial ver-
sion, what we’ve called “Original Digest Authentication.” 
Later subsections explore the enhancements available with 
the latest Digest Authentication procedures. Collectively, we 
call those procedures “Improved Digest Authentication.” 

Digest Authentication uses simple cryptographic principles 
to avoid transmitting passwords across the network. Instead, 

 

Figure 4.3 �
Some Web sites manage usernames

and passwords themselves rather
than relying on HTTP

authentication. As this example
shows, users input their

authentication information to such
sites via a standard Web page

rather than a browser’s pop-up
dialog box.
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clients prove to the server that they know their passwords 
without actually sending them to the server. 

To prove knowledge of a password, clients create a message 
digest (also known as secure hash) using the password and a 
value supplied by the server. They then transfer the digest to 
the server. The server verifies the password by duplicating 
this calculation. It takes a known value, combines it with the 
password it expects the client to use, and calculates a message 
digest. If the server’s calculation matches the client’s, then 
the server can believe the client knows the correct password. 
Figure 4.4 illustrates the process. 

For message digests, the server’s choice of data to be com-
bined with the password is critical to the overall security. 
Most importantly, the server must choose a different data 
value each time. Otherwise an adversary eavesdropping on 
the communication could simply reuse a digest value and 
impersonate the client. (If neither the data nor the password 
change, then the digest value remains the same as well.) 

In the case of http, the server begins the Digest Authenti-
cation process with a 401 Unauthorized response, just as 
with Basic Authentication. The WWW-Authenticate header, 
however, explicitly requests Digest Authentication. The sim-
plest possible case follows. 

Client Server

2 digest

1

password data

f( )

digest

3

password data

f( )

digest

if digest == digest
then password == password

4
 

Message Digest Algorithms 

Message digest algorithms are 

based on mathematical 

operations known as one-way 

functions. A one-way function is a 

mathematical transformation that 

is relatively easy to perform, but 

extremely difficult to reverse. It is 

easy for a computer to start with a 

password and other information 

and calculate a message digest, 

but it is mathematically 

impossible, given just the resulting

digest, to figure out the password 

and information used to create it. 

Today there are two common 

message digest algorithms. One is 

Message Digest 5 (MD5), created 

by Ron Rivest. Another common 

algorithm is the Secure Hash 

Algorithm (SHA), developed by 

the U.S. National Institute of 

Standards and Technology. 

� Figure 4.4 
Both clients and servers compute 
message digest values. If the two 
calculations match, then both parties 
have the same password. 
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HTTP/1.1 401 Unauthorized 
WWW-Authenticate: Digest 
    realm="users@hundredacrewoods.com", 
    nonce="dcd98bc09f81043d3a8cb935ae393db90674" 
 

As the example shows, Digest Authentication requires more 
parameters than Basic Authentication. Digest Authentica-
tion also requires the nonce parameter. The value of this pa-
rameter is the data that the client combines with its 
password when creating the digest. Servers are free to use 
this value any way they see fit, but the http specification 
suggests one particular strategy. For GET requests, it suggests 
that the nonce be composed of a timestamp and a message 
digest of three quantities: the timestamp, the ETag being re-
quested, and a secret value known only to the server. The 
timestamp lets the server assign the nonce a limited lifetime; 
the ETag value protects against an adversary replaying a cli-
ent’s request to gain access to an updated value of the re-
quested object, and the secret value ensures that adversaries 
cannot predict the value of the nonce in advance. This ap-
proach lets clients reissue requests without triggering a new 
401 Unauthorized response and the resulting recalculation 
of digest values. Because the server is able to see the time-
stamp in the nonce, it can tell how old the nonce is and ac-
cept any repeated requests within an appropriate time 
window. For POST and PUT requests, the http specification 
suggests using one-time nonces that expressly prohibit reis-
suing the request. 

The realm and nonce parameters are the only ones Digest 
Authentication requires, but http allows a few more pa-
rameters in the server’s response. Table 4.1 lists all the de-
fined parameters, along with a brief explanation of their use. 
Note that many of the parameters are applicable only for 
Improved Digest Authentication. Their use is described 
more fully in the following subsections. 

Caution: 

Original Digest Authentication 

The digest authentication process 

described in this section, which 

we’ve called “Original Digest 

Authentication,” is a procedure 

that HTTP 1.1 defines only for 

compatibility with older versions 

of the standard. Newer 

implementations are encouraged 

to use Improved Digest 

Authentication procedures. 
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Table 4.1 WWW-Authenticate Parameters 

Parameter Improved Required Use 

algorithm MD5-sess No The specific digest algorithm to use; 

either "MD5" (the default) or "MD5-sess"; 

if the qop parameter is absent, this pa-

rameter must either be absent or "MD5."

domain No No A list of URIs (separated by spaces) that 

identify the resources for which this 

authentication applies. 

nonce No Yes The data to be combined with the 

password in generating the digest. 

opaque No No An arbitrary value supplied by the 

server that the client should return, un-

modified, with its request; may be used 

by the server to assist in processing the 

request. 

qop Yes No The quality of protection; either digest 

authentication ("auth") or digest au-

thentication with integrity protection 

("auth-int"); the presence of this pa-

rameter triggers advanced digest au-

thentication (see subsection 4.1.3). 

realm No Yes A character string to be displayed to 

human users to help them identify 

which username and password to sup-

ply. 

stale No No A flag that, if it has the value "true," indi-

cates that the supplied username and 

password are apparently valid (as far as 

the server is concerned) but the authen-

ticated request relied on a nonce that 

the server no longer considers valid; 

indicates to the client that it can 

recalculate the digest using a new 

nonce without querying the human 

user for username and password. 
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When the client receives a Digest Authentication response 
from a server, it computes the message digest to add to its 
next message. Table 4.2 shows the procedure for Original 
Digest Authentication, which must be used when the server 
omits a qop parameter from its response. In such cases the 
clients are communicating with a server relying on an older 
version of the http specification. If the qop parameter is 
present then, regardless of its value, the rules of Improved 
Digest Authentication apply. 

Table 4.2 Client Calculation for Digest Authentication 

Step Action 

1 Construct a character string consisting of the username, realm, 

and the user’s password, each item separated by a colon.  

pooh:users@hundredacrewoods.com:honey, for example. 

(The specification calls this string “A1.”) 

2 Calculate the MD5 digest for this character string and represent 

the 128-bit binary result in hexadecimal as 32 ASCII characters 

from “0” to “9” and “a” to “f.” (See box.) 

3 Construct a second character string consisting of the method 

(e.g., GET, POST, etc.) and the URI, again separated by colons. For 

example, GET:/secret/honeypot.html. (The specification 

calls this string “A2.”) 

4 Calculate the MD5 digest for this character string and represent 

the result as 32 ASCII characters. 

5 Construct a character string by combining the result from step 2, 

the nonce supplied by the server, and the result from step 4, all 

separated by colons (:). 

6 Calculate the MD5 digest for the character string obtained in 

step 5 and represent the result as 32 ASCII characters. This value 

is the digest. 

With the digest calculation complete, the client is now able 
to reissue its request with appropriate authorization informa-
tion. One possible message is shown in the following. 

Representing Digest Values 

The result of a digest calculation is 

a binary value. (In the case of MD5, 

that value is 128 bits in size.) 

Parameters for HTTP messages, 

however, are conveniently 

represented as printable ASCII 

characters. To convert from binary 

to ASCII, implementations use a 

hexadecimal expression. Every 

four bits in the binary value, 

beginning with the most 

significant, are expressed as a 

character from the sets “0” to “9” 

and “a” to “f.” 
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GET /secret/honeypot.html HTTP/1.1 
Authorization: Digest username="pooh", 
   realm="users@hundredacrewoods.com", 
   nonce="dcd98bc09f81043d3a8cb935ae393db90674", 
   uri="/secret/honeypot.html", 
   response="dcd98bc09f81043d3a8cb935ae393db90674" 
 

The reissued request repeats the realm and nonce from the 
server, and it includes the username, the uri being requested 
(in case a proxy server has modified the GET request’s uri in 
transit), and the digest result, which appears as the value for 
the response parameter. These parameters are the only ones 
required in the client’s response, but http defines several 
optional parameters. Table 4.3 provides the complete list. As 
with WWW-Authenticate, note that some of the parameters 
are appropriate only for Improved Digest Authentication. 

Table 4.3 Authorization Parameters 

Parameter Improved Required Use 

algorithm MD5-sess No The specific digest algorithm used; 

either "MD5" (the default) or "MD5-

sess"; if the qop parameter is not 

included, this parameter must ei-

ther be absent or "MD5." 

cnonce Yes No A nonce value created by the client 

that triggers mutual authentication 

(see subsection 4.1.5); note that the 

client must include this parameter 

if the server explicitly indicated a 

qop parameter. 

nc Yes Yes The number of times the client has 

issued a request with the same 

nonce value; this is expressed in 

hexadecimal and begins at 

"00000001"; note that the client 

must include this parameter if the 

server explicitly indicated a qop 

parameter. 

continues… 
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Table 4.3 Authorization Parameters (continued) 

Parameter Improved Required Use 

nonce No Yes The nonce value from the server’s 

original response. 

opaque No No The opaque value originally sent by 

the server. 

qop Yes No The quality of protection used by 

the client; this can be returned only 

if the server explicitly specified one 

or more qop values in its original 

response, in which case the client’s 

value must be chosen from among 

those the server listed. 

realm No Yes The realm defined by the server. 

response No Yes The result of the digest calculation. 

uri No Yes The URI for the object the client is 

requesting; note that the HTTP 

specification indicates that values 

for this parameter should not be 

enclosed in quotation marks, 

though all examples in the specifi-

cation (as well as most implementa-

tions) do use quotation marks. 

username No Yes The username for the client. 

When the server verifies the digest of the client’s request, the 
Simple Digest Authentication process is normally complete. 
There is, however, one more optional step. The server may, if 
it chooses, add a header to its response. That header is the 
Authentication-Info header. Practically speaking, Authen-
tication-Info is practical only with Improved Digest Au-
thentication, so we’ll cover it more completely in subsection 
4.1.3. One parameter, however, may be used with Original 
Digest Authentication. That parameter is nextnonce, and it 
is intended to give the server a way to tell the client a new 
nonce value to use for subsequent requests. 
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Table 4.4 Authentication-Info Parameters 

Parameter Improved Required Use 

cnonce Yes No The cnonce value in the cli-

ent’s request; this parameter 

must be present if a qop value 

is specified. 

nc Yes No The nc value in the client’s 

request; this parameter must 

be present if a qop value is 

specified. 

nextnonce No Yes (but 

see text) 

A nonce value that the server 

wishes the client to use on its 

next request. 

qop Yes No The quality of protection used 

by the client. 

rspauth Yes No The result of the server’s digest 

calculation; this parameter 

must be present if a qop value 

is specified. 

As the table indicates, the Authorization-Info header re-
quires a nextnonce parameter. Unfortunately, although serv-
ers could reasonably use nextnonce with http 1.0, the 
performance enhancements of http 1.1 strongly discourage 
its use.  The problem is that nextnonce interferes with pipe-
lining. Recall that pipelining allows a client to construct and 
send one request before it receives a response to a previous 
request. If, however, when the response finally arrives it con-
tains a new nextnonce value, the client’s efforts in construct-
ing the new request will have gone to naught, as they would 
have necessarily used a (now) outdated nonce value. The cli-
ent will have to redo that work using the new nonce. 

The main advantage to nextnonce is that it allows servers to 
change the nonce value frequently, conceivably with every 
request. Frequent changes to the nonce do improve security, 
and they can protect against replay attacks. The Improved 
Digest Authentication procedures, however, define better 
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solutions to both problems, and they should be used instead 
of nextnonce whenever possible. That still leaves the prob-
lem of what the server should do with the parameter. The 
practical approach, and one that avoids violating the Digest 
Authentication specification, is to always include the 
nextnonce parameter, but not to change its value. 

4.1.3 Improved Digest Authentication 

The Original Digest Authentication specification was devel-
oped for version 1.0 of http. With the release of http 1.1, 
improvements to the original process have been defined. 
These enhancements include defense against replay attacks, 
support for mutual authentication, better security for fre-
quent clients, and integrity protection of the communication 
between client and server. Some of those features are auto-
matically part of Improved Digest Authentication, while 
others are made available only with the advanced services. 
Servers and clients must agree to use the optional services. 
Table 4.5 lists the additional services available with Improved 
Digest Authentication, as well as the mechanism that in-
vokes them. We’ll discuss each of these advanced services 
separately in the subsections that follow. 

Table 4.5  Digest Authentication Enhancements 

Service Mechanism 

Replay Protection Always a part of Improved Digest Authen-

tication. 

Mutual Authentication Always a part of Improved Digest Authen-

tication. 

Repeat Client Security Used if algorithm is MD5-sess. 

Integrity Protection Used if qop is auth-int. 

One factor common to each of these enhanced services, 
however, is the trigger that tells the client whether or not 
they are available. That trigger is present in the very first re-
sponse from the server, the 401 Unauthorized. To indicate 
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its support for Improved Digest Authentication, the server 
explicitly includes a quality of protection, or qop, parameter. 
The value of the parameter isn’t important, just its presence 
in the server’s response. 

HTTP/1.1 401 Unauthorized 
WWW-Authenticate: Digest 
    realm="users@hundredacrewoods.com", 
    qop="auth", 
    nonce="dcd98bc09f81043d3a8cb935ae393db90674" 
 

Although the qop parameter is explicitly for only one of the 
advanced services (integrity protection), the Digest Authen-
tication standard introduced all the advanced authentication 
features at the same time. Any client that receives the qop 
parameter from a server can assume that the server supports 
at least that version of the Digest Authentication specifica-
tion, so it can also assume that the server supports advanced 
authentication. The qop parameter is, in effect, a convenient 
indication that the server can support advanced authentica-
tion services. 

In addition to indicating support for advanced authentica-
tion, the qop parameter value can define particular security 
services. The Improved Digest Authentication specification 
defines two cases: auth and auth-int. The first case, auth, 
indicates authentication only, while the auth-int value indi-
cates authentication with integrity protection. Integrity pro-
tection is the subject of subsection 4.1.7, so we’ll defer 
discussion until then. Note, though, that a server need not 
select only a single value for qop. It can, if it wishes, include 
both auth and auth-int in its response by using the header 
qop="auth,auth-int" in its message. This tells the client 
that the server is capable of supporting either, and the client 
should choose one to use for the connection. Because 
auth-int, which includes integrity protection as well as au-
thentication, offers stronger security than auth, clients that 
are capable of supporting auth-int should always do so 
when given the choice. 
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4.1.4 Protecting Against Replay Attacks 

One of the more important services available with Improved 
Digest Authentication is protection against replay attacks. A 
replay attack is a particular type of security attack in which 
an adversary fools the server into thinking it has a valid 
password, even when it doesn’t. Figure 4.5 shows a simple 
scenario. In the figure, step 1 is a standard, authenticated re-
quest from the client. It includes the Authorization header 
with a valid digest. Because this message is sent across the 
public Internet, however, its contents are not confidential 
and the adversary, as the figure indicates, observes the re-
quest. In step 2 the adversary simply sends the same request 
over again to the server. It is, in effect, replaying the request. 
Without knowing the user’s password, the adversary cannot 
calculate a valid digest. In this case, though, the adversary 
doesn’t need to calculate the digest. The client already did 
that in the initial request. The attack is complete in step 3. In 
that step the server verifies the digest in the request, finds it 
to be valid, and returns the requested object. 

Although it may seem as if the server is acting inappropri-
ately here by answering the adversary’s request, in fact the 
server has little choice. Without the replay protection service 
of Improved Digest Authentication, the server has no way of 
distinguishing the adversary’s request from, for example, an 
impatient Web user clicking on the browser’s “Refresh” or 
“Reload” button. 

Client Server

1
GET URI
Authorization

2"GET URI
Authorization"

3

200 OK + DataAdversary  

Figure 4.5 �
In a replay attack, an adversary copies

a victim’s message and later resends it
to the same server.
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To protect against replay attacks, the client adds another pa-
rameter to its Authorization header when it reissues its 
request. The parameter is a nonce count, and its name is nc. 
The value for nc is an eight-digit hexadecimal number that 
increments each time the client issues the request with the 
same nonce value. 

GET /secret/honeypot.html HTTP/1.1 
Authorization: Digest username="pooh", 
   realm="users@hundredacrewoods.com", 
   qop=auth, 
   nonce="dcd98bc09f81043d3a8cb935ae393db90674", 
   nc=00000001, 
   cnonce="32cfe192fd109232aa1b8fe09d18d5efe53", 
   uri="/secret/honeypot.html", 
   response="dcd98bc09f81043d3a8cb935ae393db90674" 
 

For their part in replay protection, servers must keep track of 
the nc value from each client. Each time they receive a re-
quest, they make sure that the nc is greater than the last nc 
value they received. If a server sees a new request with the 
same nc value as before, the server should suspect a replay 
attack and act accordingly. 

Note that it is not possible for an adversary to capture a le-
gitimate request and just increment the nc in that request. As 
we’ll see later, with Improved Digest Authentication the nc 
value is part of the input to the digest. If an adversary alters 
the nc value without changing the digest, the digest will no 
longer be correct. And, because the adversary doesn’t know 
the user’s password, that adversary cannot correctly adjust the 
digest for an altered nc value. 

4.1.5 Mutual Authentication 

The Original Digest Authentication process gives http 
servers a way to verify the identity of clients, but it doesn’t 
help clients verify the identity of the server. Fortunately, di-
gest authentication in general can support mutual authenti-
cation with only a few minor modifications. For that reason, 
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Improved Digest Authentication automatically includes 
server authentication in the security process. If a server indi-
cates its support for advanced authentication by including a 
qop parameter in its initial response, the client must employ 
the mutual authentication process. 

Server authentication is much like client authentication, only 
backward. Clients send the server their own data. The server 
combines that data with the user’s password, calculates a di-
gest, and returns that digest along with the requested object. 
The client can then verify the digest before accepting the 
object. Figure 4.6 shows the steps involved. The key step is in 
step 4. It is here that the server includes the Authentica-
tion-Info parameter that proves its knowledge of the user’s 
password. 

The server triggers the mutual authentication process by in-
cluding a qop parameter in its 401 Unauthorized response. 
If the client supports Improved Digest Authentication, it 
must, according to the rules of the Digest Authentication 
standard, initiate server authentication. 

HTTP/1.1 401 Unauthorized 
WWW-Authenticate: Digest 
    realm="users@hundredacrewoods.com", 
    qop="auth", 
    nonce="dcd98bc09f81043d3a8cb935ae393db90674" 
 

Client Server
2

401 Unauthorized
WWW-Authenticate

1 GET URI

3
GET URI
Authorization

4
200 OK

Authentication-Info

 

Figure 4.6 �
With improved digest authentication,

a server can prove that it knows the
client’s password. The

Authentication-Info header carries
this proof. This service provides

greater security than the basic
authentication exchange, where only
the client actually demonstrates that

it knows the password.
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To initiate server authentication, the client adds one more 
parameter to the Authorization header in its reissued re-
quest. That parameter is cnonce, which is short for client 
nonce. The cnonce parameter has the same format as the 
server’s nonce parameter. 
GET /secret/honeypot.html HTTP/1.1 
Authorization: Digest username="pooh", 
   realm="users@hundredacrewoods.com", 
   qop=auth, 
   nonce="dcd98bc09f81043d3a8cb935ae393db90674", 
   nc=00000001, 
   cnonce="32cfe192fd109232aa1b8fe09d18d5efe53", 
   uri="/secret/honeypot.html", 
   response="dcd98bc09f81043d3a8cb935ae393db90674" 
 

Clients using Improved Digest Authentication also calculate 
the digest slightly differently than for Original Digest Au-
thentication. Unlike with the original service, clients include 
the value of their nc, cnonce, and qop parameters in the cal-
culation. Table 4.6 outlines the steps. Note that table 4.6 lists 
the steps when the parties are not using protection for repeat 
clients (subsection 4.1.6) and when they are not employing 
integrity protection (subsection 4.1.7). 

Table 4.6 Improved Client Calculation 

Step Action 

1 Construct a character string containing the username, realm, 

and password, each item separated by a colon, 

pooh:users@hundredacrewoods.com:honey, for example. 

(This is string “A1.”) 

2 Calculate the MD5 digest for this character string and repre-

sent the result in hexadecimal as 32 ASCII characters. 

3 Construct a second character string consisting of the method 

(e.g. ,GET, POST, etc.) and the URI, again separated by colons. 

For example, GET:/secret/honeypot.html. (This is string 

“A2.”) 

4 Calculate the MD5 digest for this character string and repre-

sent the result as 32 ASCII characters. 
continues… 
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Table 4.6 Improved Client Calculation (continued) 

Step Action 

5 Construct a character string by combining the result from step 

2, the nonce supplied by the server, the nc value, the 

cnonce value, the qop value, and the result from step 4, all 

separated by colons (:). 

6 Calculate the MD5 digest for the character string obtained in 

step 5 and represent the result as 32 ASCII characters. This 

value is the digest. 

Of course, the server side of mutual authentication only be-
gins with the client’s request. The server has to confirm that 
it knows the user’s password when it returns its response. To 
do that, the server uses the Authentication-Info header. 
The header repeats the values for the qop, cnonce, and nc 
parameters in the client’s request, and it includes the 
rspauth parameter, which contains the digest calculated by 
the server. 

HTTP/1.1 200 OK 
Authentication-Info: qop=auth, 
   rspauth="78d98bc09f81ba3d3a8cb935a9993db90674", 
   cnonce="32cfe192fd109232aa1b8fe09d18d5efe53", 
   nc=00000001 

The server calculates its digest value using the same proce-
dure as the client, with one small exception: Servers do not 
include the method in their construction of a2. They omit 
the method from the character string so that the first charac-
ter of the a2 string is a colon. Table 4.7 provides the details. 
Again, note that this table assumes that neither frequent cli-
ent protection nor integrity protection is in use. 

Table 4.7 Improved Server Calculation 

Step Action 

1 Construct a character string consisting of the username, realm, 

and password, each item separated by a colon, 

pooh:users@hundredacrewoods.com:honey, for example. 

(This is string  “A1.”) 
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Table 4.7 continued 

Step Action 

2 Calculate the MD5 digest for this character string and repre-

sent the result in hexadecimal as 32 ASCII characters. 

3 Construct a second character string consisting of a colon fol-

lowed by the URI of the client’s request. As an example,  

:/secret/honeypot.html. (This is string “A2.”) 

4 Calculate the MD5 digest for this character string and repre-

sent the result as 32 ASCII characters. 

5 Construct a character string by combining the result from step 

2, the nonce value, the nc value, the cnonce value, the qop 

value, and the result from step 4, all separated by colons (:). 

6 Calculate the MD5 digest for the character string obtained in 

step 5 and represent the result as 32 ASCII characters. This 

value is the digest. 

4.1.6 Protection for Frequent Clients 

While replay protection and mutual authentication are man-
datory features of Improved Digest Authentication, the 
other advanced services are optional. The optional services 
are quite valuable, however, and should be used whenever 
they are available. A case in point is the optional protection 
for “frequent clients.”  We use the term “frequent client” for 
an http client that makes many requests of an http server. 
Those many requests could be a product of a single, complex 
session, or they may be due to clients that make the same 
request many times. The problem facing those clients is that 
the more they interact with a server, the more vulnerable 
their password becomes. 

The root of this problem is the method clients (and servers) 
use to convert the password into the value, known in cryp-
tography as a key, that actually protects the data. In the ex-
amples described previously, that key is a1, and it is the 
combination of three items—the username, the realm, and 
the password. What’s noteworthy is that those three items 
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do not normally change as the client makes repeated requests 
of a host. Every request to the host will use the same key to 
protect its authentication information. 

In cryptography, the more information protected with a 
given key, the less secure that key becomes. Adversaries have 
more data to analyze, and the more data they have, the easier 
the analysis becomes. If a client continues to use the same 
key long enough, eventually an adversary will be able to dis-
cover its value. 

To protect against this type of analysis, the Improved Digest 
Authentication approach introduces an option that modifies 
the way the key is created. This modification results in a key 
that changes periodically, based on responses from the server. 
By forcing the client to change keys occasionally, the server 
prevents adversaries from gathering a substantial amount of 
data protected by the same key, ultimately giving users 
greater protection of their passwords. 

Clients use the improved approach whenever the algorithm 
parameter specifies MD5-sess. The server can propose this 
algorithm in its original response, as below. 

HTTP/1.1 401 Unauthorized 
WWW-Authenticate: Digest 
    realm="users@hundredacrewoods.com", 
    qop="auth", 
    algorithm=MD5-sess, 
    nonce="dcd98bc09f81043d3a8cb935ae393db90674" 
WWW-Authenticate: Digest 
    realm="users@hundredacrewoods.com", 
    qop="auth", 
    algorithm=MD5, 
    nonce="dcd98bc09f81043d3a8cb935ae393db90674" 
 

Note that in this example the server proposes both the MD5 
and the MD5-sess algorithms. By proposing both options, 
the server can support clients that implement only MD5. 
Those clients will ignore the first WWW-Authenticate but 
accept the second one. Clients that can support both MD5 and 
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MD5-sess, however, should always choose to use MD5-sess, 
as that provides greater security. 

Clients accept one of the proposed algorithms when they 
reissue their request. The following fragment shows a client 
accepting the MD5-sess algorithm. 

GET /secret/honeypot.html HTTP/1.1 
Authorization: Digest username="pooh", 
   realm="users@hundredacrewoods.com", 
   qop=auth, 
   algorithm=MD5-sess, 
   nonce="dcd98bc09f81043d3a8cb935ae393db90674", 
   nc=00000001, 
   cnonce="32cfe192fd109232aa1b8fe09d18d5efe53", 
   uri="/secret/honeypot.html", 
   response="dcd98bc09f81043d3a8cb935ae393db90674" 

When MD5-sess is selected, table 4.8 shows the algorithm 
that the clients use to calculate their digest. It differs from 
the original algorithm only in step 1 (which is now, as you 
can see, really two steps). 

Table 4.8 Digest Calculation with MD5-sess Algorithm 

Step Action 

1a Construct a character string consisting of the username, the 

realm, the user’s password, the nonce value, and the cnonce 

value, each item separated by a colon. 

1b Calculate the MD5 digest for this character string and repre-

sent the result in hexadecimal as 32 ASCII characters. (This is 

string “A1.”) 

2 Calculate the MD5 digest for this new character string and 

represent the result in hexadecimal as 32 ASCII characters. 

3 Construct a second character string consisting of the method 

(e.g., GET, POST, etc.) and the URI for the method, again sepa-

rated by colons. For example, GET:/secret/honeypot.html. 

(This is string “A2.”) 

4 Calculate the MD5 digest for this character string and repre-

sent the result as 32 ASCII characters. 

continues… 
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Table 4.8 Digest Calculation with MD5-sess Algorithm (continued) 

Step Action 

5 Construct a character string by combining the result from 

step 2, the nonce supplied by the server, the nc value, the 

cnonce value, the qop value, and the result from step 4, all 

separated by colons (:). 

6 Calculate the MD5 digest for the character string obtained in 

step 5 and represent the result as 32 ASCII characters. This 

value is the digest. 

4.1.7 Integrity Protection 

Until this point, we’ve discussed how Digest Authentication 
verifies the identities of the communicating parties. That is 
certainly a valuable security service, but, with just a minor 
modification, the same mechanisms can provide an addi-
tional security as well—integrity protection. Integrity protec-
tion gives the communicating systems a way to verify not 
only each other’s identity, but also the authenticity of the 
information they send. 

To understand the value of this service, consider the example 
of figures 4.7 and 4.8. The first figure shows the client’s view 
of a transaction. The figure illustrates a standard electronic 
banking transaction, and it begins after the server has sent a 
WWW-Authenticate response asking the client to identify 
itself. The client sends its instruction with an http POST 
message, and it appears to receive the 200 OK response from 
the server. 

Client

1    POST URI
   Authorization
<Pay Electric Bill>

2200 OK

Server

Figure 4.7 �
A client may think that the server is

receiving and responding to its
messages, as in this figure. As figure

4.8 shows, however, something more
sinister may actually be taking place.
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Figure 4.8 shows what’s really happening, however. As that 
figure shows, an adversary has placed itself between the cli-
ent and the server, and neither the client nor the server are 
aware of that fact. The adversary pretends to be the server in 
its interaction with the client, and it pretends to be a client 
in its interaction with the server. (Because of the adversary’s 
position, this type of attack is known as a man-in-the-middle 
attack in security circles.) 

Notice how the adversary takes advantage of its position. It 
accepts the client’s request and then modifies the message 
body before passing it on to the server. The user intended to 
pay an electric bill but has, unwittingly, transferred money to 
the adversary instead. The insidious part of this attack is that 
the adversary does not modify the Authorization header in 
the client’s request. When the server calculates the digest to 
verify the client’s identity, it will find that the digest matches 
perfectly with the response parameter in the request. 

This vulnerability is clearly a serious one. Fortunately, it is 
fairly simple to protect against. The trick is in the calculation 
of the digest. If the client includes the entire contents of its 
message in the digest calculation, then the digest process will 
protect those contents just as it protects the user’s password. 
If an intermediate adversary modifies the data, then the 
server’s calculation of the digest (based on the modified data) 
will not match the digest in the Authorization header 
(which the client calculated using the original data). Of 
course, no adversary can adjust the digest value to account 
for this because no adversary possesses the user’s password. 

Client Server

1    POST URI
   Authorization
<Pay Electric Bill>

Adversary

2    POST URI
   Authorization
<Pay Adversary>

3200 OK4200 OK  

� Figure 4.8 
Without integrity protection, an 
adversary may be intercepting 
and modifying the contents of a 
client’s messages. 
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To trigger integrity protection as well as authentication, the 
server proposes a qop value of auth-int. Notice from the 
example below that the server can combine the auth-int 
value with the standard auth value in one header. Unlike the 
algorithm parameter, there is no need to include two sepa-
rate headers because the same algorithm value applies in 
either case. 

HTTP/1.1 401 Unauthorized 
WWW-Authenticate: Digest 
    realm="users@hundredacrewoods.com", 
    qop="auth,auth-int", 
    algorithm=MD5, 
    nonce="dcd98bc09f81043d3a8cb935ae393db90674" 
 

When the client wishes to use integrity protection, it in-
cludes the entire entity body of its message in the input to 
the digest function. As table 4.9 shows, that change affects 
the value of a2, which is calculated in step 3. All the other 
steps remain the same. (Note that table 4.9 does not include 
the frequent client protection section 4.1.6 describes.) 

Table 4.9 Client Digest Calculation for Integrity Protection 

Step Action 

1 Construct a character string consisting of the username, 

realm, and password, each item separated by a colon, 

pooh:users@hundredacrewoods.com:honey., for example. 

(This is string “A1.”) 

2 Calculate the MD5 digest for this character string and repre-

sent the result in hexadecimal as 32 ASCII characters. 

3 Construct a second character string consisting of the method 

(e.g., GET, POST, etc.), the URI for the method, and the entire 

entity body, prior to any transfer encoding, again separated by 

colons. 

4 Calculate the MD5 digest for this character string and repre-

sent the result as 32 ASCII characters. 
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Table 4.9 continued 

Step Action 

5 Construct a character string by combining the result from 

step 2, the nonce supplied by the server, the nc value, the 

cnonce value, the qop value, and the result from step 4, all 

separated by colons (:). 

6 Calculate the MD5 digest for the character string obtained in 

step 5 and represent the result as 32 ASCII characters. This 

value is the digest. 

The client includes this new digest value in its reissued re-
quest, along with an appropriate qop value. The qop parame-
ter indicates that it has accepted the server’s proposal to 
include integrity protection. 

GET /secret/honeypot.html HTTP/1.1 
Authorization: Digest username="pooh", 
   realm="users@hundredacrewoods.com", 
   qop=auth-int, 
   nonce="dcd98bc09f81043d3a8cb935ae393db90674", 
   nc=00000001, 
   cnonce="32cfe192fd109232aa1b8fe09d18d5efe53", 
   uri="/secret/honeypot.html", 
   response="dcd98bc09f81043d3a8cb935ae393db90674" 
 

When the client accepts a proposal to use integrity protec-
tion, the server should do likewise. In the digest for its re-
sponse, therefore, it includes the entity body of that response 
in its own digest calculation. It confirms integrity protection 
with the qop value of auth-int. 

HTTP/1.1 200 OK 
Authentication-Info: qop=auth-int, 
   rspauth="78d98bc09f81ba3d3a8cb935a9993db90674", 
   cnonce="32cfe192fd109232aa1b8fe09d18d5efe53", 
   nc=00000001 
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Table 4.10 details the digest calculation. The difference is in 
step 3, where the server calculates a2. Note that this table 
does not include frequent client protection calculations. 

Table 4.10 Server Digest Calculation for Integrity Protection 

Step Action 

1 Construct a character string consisting of the username, 

realm, and password, each item separated by a colon, 

pooh:users@hundredacrewoods.com:honey, for example. 

(This is string  “A1.”) 

2 Calculate the MD5 digest for this character string and repre-

sent the result in hexadecimal as 32 ASCII characters. 

3 Construct a second character string consisting of a colon fol-

lowed by the URI of the client’s request, followed by another 

colon and then the entire entity body prior to any transfer 

encoding. (This is string “A2.”) 

4 Calculate the MD5 digest for this character string and repre-

sent the result as 32 ASCII characters. 

5 Construct a character string by combining the result from 

step 2, the nonce value, the nc value, the cnonce value, the 

qop value, and the result from step 4, all separated by colons 

(:). 

6 Calculate the MD5 digest for the character string obtained in 

step 5 and represent the result as 32 ASCII characters. This 

value is the digest. 

4.2 Secure Sockets Layer 

Although the http’s own procedures offer some important 
security services, they do not provide complete security for 
the systems’ communications. In particular, they offer no way 
to encrypt the messages to protect the parties’ privacy. That’s 
a significant disadvantage for the World Wide Web. The 
Web uses the public Internet as its network, and communi-
cations traffic on the public Internet is just that—public. Be-
cause adversaries are free to observe messages that travel 
between clients and servers, encrypting those messages so 



Securing HTTP 157 

 

that adversaries cannot understand them is critical to appli-
cations such as electronic commerce. Otherwise, valuable and 
private information such as credit card numbers could be 
easily intercepted, as figure 4.9 illustrates. 

Fortunately, the Web has developed a technology to provide 
the necessary confidentiality for communication traffic. That 
technology is not an enhancement to http but, rather, an 
entirely separate protocol known as the Secure Sockets Layer 
(ssl). Netscape Communications designed ssl for inclusion 
in its Web browser, and nearly all Web servers and Web 
browsers have followed suit. By now, ssl is by far the most 
popular network security technology deployed in the world. 

This section provides a brief introduction to the Secure 
Sockets Layer protocol. It first shows the relationship be-
tween ssl and other protocols, as well as its typical imple-
mentation environment. The section then introduces public 
key cryptography, the crucial cryptographic technology on 
which ssl is based. The section then shows ssl in operation. 

4.2.1 SSL and Other Protocols 

As a separate protocol, ssl is available to all applications that 
use tcp for transport. Figure 4.10 shows its position in the 
standard protocol stack. 

Notice that in the standard case http communicates directly 
with tcp while, when ssl is involved, http communicates 
only with ssl, and ssl, in turn, communicates with tcp. 

Client Server

POST URI
<Credit Card = 1234 ...>

Adversary  

� Figure 4.9 
Without the Secure Sockets Layer (or 
something equivalent), an adversary 
can eavesdrop on a communication 
and uncover confidential information.
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In any communications, particularly the Web, the client de-
cides whether to use ssl or not. For the specific case of ssl in 
combination with http, the standard uri scheme “https:” 
indicates a secure session. Users may enter the full uri di-
rectly in a browser, or they may be redirected to a secure ses-
sion by a link. In either case, most browsers provide a 
convenient way for users to tell if the session is secure. Figure 
4.11 shows how Microsoft’s Internet Explorer shows a secure 
site. Notice the padlock icon in the lower right corner of the 
window. 

Although the uri scheme allows explicit specification of a 
tcp port, http over ssl has a default port of 443. This ap-
proach does highlight a limitation with ssl. Each application 
that has the option of using ssl needs two separate default 
tcp ports: one for standard, non-secure operation (e.g., 
http’s port 80) and a separate port for secure communica-
tions (such as http’s port 443). 

TCP

IP

Network Technology

HTTP

Standard HTTP HTTP Secured with SSL

Network Technology

IP

TCP

SSL

HTTP

 

Figure 4.10 �
The SSL protocol inserts itself

between an application like HTTP and
the TCP transport layer. TCP sees SSL

as just another application, and HTTP
communicates with SSL much the

same as it does with TCP.
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4.2.2 Public Key Cryptography 

Public key cryptography, on which ssl relies, solves a funda-
mental problem that exists in conventional cryptography: key 
management. With conventional cryptography, both com-
municating parties share a single secret value, known as the 
key. In the case of http security discussed in the last section, 
that key is the user’s password. Both the client and the server 
need to know the password before authentication or integrity 
protection can succeed. 

Keys that must be shared by communicating parties present a 
serious problem to any security system. How do the parties 
agree on and exchange the value of the key? It’s usually not 
acceptable to simply send the key using the same 
communication path that the key will later secure. After all, 

 

� Figure 4.11 
The padlock icon at the lower right of 
the browser’s window indicates that 
the session is secured with SSL. Other 
browsers use similar icons to indicate 
secure communications. 
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if there are adversaries in that path waiting to intercept 
communications, they can just as well intercept the key. And 
if an adversary possesses the secret key, then securing the 
communication is not worthwhile. 

Public key cryptography solves this problem by relying on 
two separate keys. If one key is used to encrypt information, 
the other key is required to decrypt it. The keys obviously 
share a complex mathematical relationship, but it is not pos-
sible, knowing only one of the pair, to discover or calculate 
the other. 

Having a pair of keys rather than a single key makes possible 
a whole new method of key distribution. One of the keys can 
be freely published. A server, for example, can send one of its 
keys, the key known as its public key, to any client that asks 
for it. Clients can take the key, use it to encrypt information, 
and send the encrypted information to the server. The server 
then uses its other key, its private key, to decrypt the client’s 
information. In such a scheme there is no danger in revealing 
the public key to an adversary. Knowing the public key does 
not let an adversary decrypt the confidential information. 

Public key cryptography is useful for more than just encryp-
tion; it also provides a powerful method of authentication. 
Public key authentication reverses the roles of the two keys 
that make up the key pair. A client that wishes to prove its 
identity, for example, begins with known data and encrypts it 
using its private key. Anyone with the client’s public key can 
then decrypt the information. If it matches the original 
known value, then the client is certain to have been the one 
to encrypt it (because only the client knows its private key). 

There is one factor that makes public key cryptography 
slightly less convenient than the description so far would 
imply. The complication is ensuring the authenticity of pub-
lic keys. To return to the earlier example, suppose a client 
asks for a server’s public key. How can the client be sure that 
the public key really does belong to the server and not an 

Public Key Disadvantages 

Public key technology has truly 

revolutionized cryptography by 

eliminating the vulnerabilities 

inherent in distributing traditional 

cryptographic keys. Unfortunately, 

the technology does have one 

noteworthy disadvantage: It’s 

slow. Public key encryption 

algorithms are much more 

complex than encryption 

algorithms that rely on traditional 

keys shared by both parties. This 

additional complexity requires 

significantly more processing 

power and time, resources that 

can be at a premium in 

applications such as large-scale 

electronic commerce Web sites. 

Fortunately, most public key 

implementations, including the 

SSL protocol, adopt an elegant 

approach that provides the 

benefits of public key encryption 

without much of its costs. Instead 

of encrypting an entire 

communications session using 

public key algorithms, one of the 

parties creates—on the fly—a 

traditional shared key. That party 

then uses a public key algorithm 

to encrypt that key and send it 

safely to its partner. The two 

parties can then use traditional 

encryption algorithms to protect 

their communications. 
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adversary posing as the server? Public key authentication by 
itself won’t help, because that’s effective only after the client 
is sure of the server’s public key. Public key cryptography in 
general, and ssl in particular, resolves this problem by using 
public key certificates and certificate authorities. A certificate 
authority is a party that both clients and servers trust, and 
one for whom they know the legitimate public key. To make 
its own public key trustworthy, a server presents it to the cer-
tificate authority, along with suitable proof of the server’s 
identity. The certificate authority (ca) then encrypts the 
server’s public key using its own private key, a process known 
as signing. The resulting signed public key is stored in a digi-
tal certificate. It is this digital certificate, not just its public 
key, which the server sends to clients. Those clients who 
know the certificate authority’s public key can verify that the 
ca did indeed certify the server’s public key. 

Of course, that still leaves one problem. How do clients and 
servers learn the public keys of the certificate authority? 
They can’t learn them over an insecure network, as that 
would allow an adversary to pose as a ca. In this case there is 
no magic available; communicating parties must learn of the 
ca through a means other than the network. In the case of 
the Web, browsers and servers are preloaded by their manu-
facturer with the public keys of important certificate authori-
ties. Figure 4.12 shows some of authorities that Netscape pre-
installs in its browser. 

4.2.3 SSL Operation 

The Secure Sockets Layer protocol offers three important 
security services to applications that use it. Those services are 
authentication, message integrity, and confidentiality. Re-
spectively, those services provide confident answers to three 
questions: “With whom am I communicating?”, “Have I re-
ceived precisely the information that the other party sent 
(and vice versa)?”, and “Have we ensured that a third party 
cannot eavesdrop on the communications?” 
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The ssl protocol can provide these services in several ways; 
however, when securing http communications, particularly 
on the Web, two scenarios are especially common. Typical 
electronic commerce sites employ one scenario: ssl authenti-
cates the Web server and encrypts and protects communica-
tions between the server and browser. Some specialized sites 
use the second scenario: In addition to authenticating the 
server, those sites use ssl to authenticate the client as well. 

In both cases the communicating parties exchange a 
sequence of ssl messages before transferring http 
information. Figure 4.13 shows the sequence of messages for 
server-only authentication. Table 4.11 describes each of the 
messages in the exchange. 

Once the nine-step negotiation is complete, application pro-
tocols (such as http) can begin exchanging their own mes-
sages securely. In the case of http, the client typically 
follows the ssl negotiation with a GET or POST request. Note 
that ssl adds its own headers to each application message. 

 

Figure 4.12 �
Commercial Web browsers are

preconfigured with a list of trusted
certificate authorities.
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These headers keep the two parties synchronized, and they 
provide message integrity protection. 

The preceding ssl negotiation is an effective way to authen-
ticate the server, and it establishes a secure communications 
channel between the server and client. It does not, however, 
authenticate the identity of the client. That’s because, in 
many applications, ssl isn’t needed to verify the client’s iden-
tity. Consider electronic commerce applications, for example. 
In a typical transaction the customer provides credit card 
information, and it is a valid credit card number that vali-
dates the user. Other sites ask users to select usernames and 
passwords, as that combination is far easier for humans to 
manage than public key technology. In such environments, 
cryptographic authentication of the client is unnecessary. 

Client Server

1 Client Hello

2Server Hello

3Certificate

4Server Hello Done

5 Client Key Exchange

6 Change Cipher Spec

7 Finished

8Change Cipher Spec

9Finished

 

� Figure 4.13 
Establishing an SSL session for the first 
time requires the exchange of several 
messages. In step 1 the client 
introduces itself and its capabilities; 
the server responds in step 2 by 
selecting the parameters for the 
session. It then sends the client its 
public key certificate in step 3, and it 
ends its part of the initial exchange in 
step 4. With step 5, the client picks a 
secret key for the session, encrypts it 
using the server’s public key, and 
sends it to the server. Since only the 
server knows its private key, only the 
server can decrypt the secret key. In 
the remaining steps, both systems 
conclude the negotiation phase and 
activate the session’s security. 
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Table 4.11 Basic SSL Session Negotiation 

Step Action 

1 Client sends Server a Client Hello message. In this message the client iden-

tifies the versions of SSL that it supports (the latest version is 3.0), and it 

proposes a series of security capabilities it would like to employ for the 

communication. These security capabilities are known as Cipher Suites, and 

they identify parameters such as specific cryptographic algorithms and 

encryption key sizes. 

2 Server responds with a Server Hello message. In this message the server 

selects both the SSL version and the security capabilities for the commu-

nication. The server must pick from among those proposed by the client. 

3 The Server sends a Certificate message, which conveys its public key cer-

tificate to the client. Note that the client is responsible for ensuring that 

this certificate is valid, that it was issued by a trusted authority, and that it 

identifies the server (e.g., the Web site) that the client or user intended to 

contact. 

4 The Server sends a Server Hello Done message to indicate that it has con-

cluded its part of the initial SSL negotiation. 

5 The client responds with a Client Key Exchange message. This message 

contains cryptographic keys that will be used to encrypt the communica-

tions. The keys themselves are encrypted using the server’s public key 

(obtained from the Certificate message in step 3), so that only the server 

will be able to decipher and retrieve these keys. 

6 The client sends a Change Cipher Spec message. This message is a signal 

that the client will encrypt all subsequent communications using the cryp-

tographic keys. 

7 The client sends a Finished message, which is encrypted according to the 

negotiated cryptographic keys and algorithms. The server’s ability (or in-

ability) to successfully decrypt this message ensures that the negotiation 

has been successful. 

8 The server sends its own Change Cipher Spec message. As with the client, 

this message signals that future messages will be encrypted. 

9 The server concludes the SSL negotiation with a Finished message of its 

own which, as is the case for the client’s Finished message, is encrypted 

according to the negotiated parameters. Once the client has successfully 

decrypted this message, it is assured that the negotiation has succeeded. 
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In some specialized implementations, however, crypto-
graphic authentication is useful. The ssl protocol supports 
this type of operation as well. Figure 4.14 shows the message 
exchange for client authentication. The figure highlights 
those messages that differ from typical server-only authenti-
cation. Table 4.12 describes those steps. 

Client Server

1 Client Hello

2Server Hello

3Certificate

5Server Hello Done

7 Client Key Exchange

9 Change Cipher Spec

Change Cipher Spec

Finished

11

Finished10

12

4
Certificate

Request

6 Certificate

8 Certificate Verify

 

� Figure 4.14 
Clients can also use SSL to 
authenticate themselves to the 
servers. The server requests such 
authentication by sending a 
certificate request, as in step 4. The 
client honors this request in step 6, 
and then, in step 8, it sends a special 
message that verifies its knowledge of 
the corresponding private key. The 
rest of the exchange is the same as in 
figure 4.13. 
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Table 4.12 Additional Steps for Client Authentication 

Step Action 

4 The server sends a Certificate Request message after sending its 

own certificate. This message tells the client that the server 

wants to authenticate the client using SSL, and it is the trigger 

for SSL’s client authentication. 

6 The client provides its public key certificate in a Certificate mes-

sage. 

8 The client sends a Certificate Verify message, in which it en-

crypts some known information using its private key. The server 

can decrypt the information using the public key from the cli-

ent’s certificate. Successful decryption verifies that the client 

truly possesses the private key corresponding to the public key 

certificate. 

There are two important items to note about client authenti-
cation using ssl. First, the client has to possess a public key 
certificate, and it must be one that the server can trust. Often 
the server itself (or the same organization that operates the 
server) issues client certificates. Secondly, ssl client authen-
tication tends to authenticate the system acting as the client; 
it is not normally effective at authenticating the user of that 
system. Because public key certificates are far too complex 
for humans to conveniently store and remember, clients rely 
on the computer systems to store and manage them, and 
computer systems are frequently vulnerable to unauthorized 
users. For this reason electronic commerce sites do not nor-
mally use ssl client authentication to validate their users. 

Something that figures 4.13 and 4.14 highlight is that ssl ne-
gotiation can add significant overhead to a communication. 
Not only must the parties exchange several ssl messages, 
they must perform processor- and time-intensive public key 
encryption. (See the “Public Key Disadvantages” sidebar on 
page 160.) For a Web site struggling to serve millions of us-
ers, ssl overhead can have a significant impact on perform-
ance. Using http persistence helps, as it lets clients issue 
multiple http requests without renegotiating the ssl pa-
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rameters. The ssl protocol also provides its own form of per-
sistence, however, which may be useful for applications that 
do not support persistence or in cases where persistence is 
impractical. The approach is relatively straightforward. With 
each negotiation, the server may, if it chooses, assign a Ses-
sion id to the results. When the client later wants to reestab-
lish secure communications, it can include the Session id in 
its Client Hello message. If the server agrees to reuse the 
previously negotiated parameters, it replies with the same 
Session id in its Server Hello. Figure 4.15 illustrates the 
complete exchange, and table 4.13 describes each step. 

Table 4.13 Resuming a Previously Established SSL Session 

Step Action 

1 The client sends a Client Hello message containing a previously 

established SSL Session ID. Note that the client should also in-

clude a full set of proposed cryptographic parameters in case 

the server decides not to reuse the session. 

2 The server responds with a Server Hello message also contain-

ing the Session ID, indicating that it is willing and able to resume 

the SSL session. 
continues… 

Client Server

1 Client Hello

2Server Hello

5 Change Cipher Spec

6 Finished

3Change Cipher Spec

4Finished

 

� Figure 4.15 
If they have previously established an 
SSL session, clients and servers can 
reuse that session’s parameters and 
avoid a full SSL negotiation process. 
The client proposes to resume an 
earlier session in its hello message. If 
the server agrees, it accepts the 
proposal in its hello reply. 
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Table 4.13 Resuming a Previously Established Session (continued) 

Step Action 

3 The server follows its Server Hello with an immediate Change 

Cipher Spec. This message signals the resumption of the secure 

session. 

4 The server concludes its part of the negotiation by sending a 

Finished message, which is encrypted according to the session 

parameters. The client decrypts this message to make sure that 

the session resumption has succeeded. 

5 The client sends its own Change Cipher Spec message to indi-

cate that it will begin using the negotiated session parameters. 

6 The client concludes the handshake with a Finished message, 

which is encrypted. The server decrypts this message to verify 

that the session has resumed successfully. 

4.3 Transport Layer Security 

The Secure Sockets Layer protocol was designed by Net-
scape Communications. And, although Netscape did involve 
the Internet community in its development, ssl technically 
remains a proprietary protocol. To ensure that Web security 
can be supplied by a true, open standard, the Internet Engi-
neering Task Force (ietf) took over responsibility for en-
hancements and updates to ssl and, as part of the transition, 
gave the protocol a new name: Transport Layer Security, or 
tls. 

4.3.1 Differences from SSL 

Despite the new name, tls is really nothing more than the 
next revision of ssl. Indeed, it is a relatively minor revision. 
Its designers acknowledge the modesty of their changes in 
the protocol version number; tls messages indicate their 
protocol version as 3.1. (The last version of ssl is version 3.0.) 

Other than a new version number, tls makes only two real 
changes to ssl. First, it almost doubles the number of error 

Version Number Confusion 

Although the protocol messages 

advertise a protocol version of 

“3.1,” the TLS protocol itself is 

officially known as TLS version 1.0. 

That’s because even though TLS is 

effectively version 3.1 of SSL, it is 

technically the first version of 

Transport Layer Security. 

Presumably, version 2 of TLS will 

advertise itself as protocol version 

“4.0” in its messages. This 

approach is perhaps an 

unfortunate one, as it may cause 

confusion for the life of the 

protocol. The IETF could resolve 

this confusion by making the next 

version of TLS version 4 rather 

than version 2. 
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message types; this increase should help identify and isolate 
interoperability problems. Second, tls makes slight adjust-
ments to the complex cryptographic calculations to eliminate 
some minor theoretical weaknesses. 

4.3.2 Control of the Protocol 

The real significance of the migration from ssl to tls is 
control of the protocol. With tls that control rests with an 
international standards organization, the ietf, rather than 
Netscape. The ietf provides a much more open and under-
standable process for adding to tls, particularly in its cipher 
suites. A cipher suite specifies the cryptographic parameters 
of a secure communication, including elements such as the 
encryption algorithm and key size. The ietf has already ac-
cepted proposals to increase the number of cipher suites sup-
ported by tls. Those proposals adopt existing security 
systems such as Kerberos, and they add advanced new tech-
nology such as elliptic curve cryptography, technology that is 
particularly well suited for low-power devices such as mobile 
phones and personal digital assistants. These advances will 
help bring tls—and with it secure http—to all manner of 
devices and systems. 

 4.3.3 Upgrading to TLS within an HTTP Session 

There is another significant effect of ietf control over tls. 
Because the ietf also controls http, much closer coordina-
tion between the two protocols is possible. Indeed, such co-
operation is already apparent. One of the problems with ssl 
is that it requires a separate tcp port for each application it 
secures. That is why the Web uses port 80 for standard http 
and port 443 for http secured by ssl. With tls, however, it 
is now possible to support both secure and non-secure opera-
tion on the same port. This conserves tcp port numbers, 
which can be a limited resource on many systems. 

To support a single port the communicating systems begin 
their http connection without security. Then, while the 
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connection remains active, they upgrade to a secure session. 
The upgrade can be initiated either by the client or the 
server. The client begins the upgrade process by including 
the Upgrade and Connection headers in its message, as in 
the following example. 

GET http://www.bank.com/acct.html?7493948 HTTP/1.1 
Host: www.bank.com 
Upgrade: TLS/1.0 
Connection: Upgrade 
 

The server can respond to this request with a 101 status. 

HTTP/1.1 101 Switching Protocols 
Upgrade: TLS/1.0, HTTP/1.1 
Connection: Upgrade 
 

After this exchange, the two parties carry out a tls hand-
shake negotiation. Once that has succeeded, the server re-
plies to the client’s original GET request. 

One potential problem with this approach is that the server 
can choose not to perform the requested upgrade. In that 
case, it will still respond to the client’s GET request; the re-
sponse, however, will not be secured by tls. Because of this 
possibility, clients should include the upgrade request directly 
in a GET message only if it is acceptable for the server to re-
spond to the GET without security. In effect, the client’s re-
quest to upgrade to tls is optional. 

To avoid this behavior, the client can request the upgrade 
before it issues a critical GET request. Clients should also do 
this if the GET message itself includes data that should be 
kept confidential. To upgrade before committing to a GET or 
POST exchange, clients can use an OPTIONS message. 

OPTIONS * HTTP/1.1 
Host: www.bank.com 
Upgrade: TLS/1.0 
Connection: Upgrade 
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The server responds as before, either accepting the upgrade 
or not. This time, however, the client has the benefit of the 
server’s response before it sends a GET message. If the server 
does not upgrade to tls, the client can simply terminate the 
connection without sending a GET. 

A server can indicate its willingness to upgrade to tls in any 
response other than a 101 or 426. It simply includes the Up-
grade and Connection headers in that response. 

HTTP/1.1 200 OK 
Upgrade: TLS/1.0, HTTP/1.1 
Connection: Upgrade 
 

Actual initiation of the upgrade is still up to the client, and 
the client does so using either of the techniques above. The 
client will know in advance, however, that the server can 
support a tls upgrade. 

If the server wishes to force the client to initiate an upgrade, 
it can respond with a 426 Upgrade Required error status. 

HTTP/1.1 426 Upgrade Required 
Upgrade: TLS/1.0, HTTP/1.1 
Connection: Upgrade 

<HTML> 
<BODY> 
<P>Secure connection required. Please follow <A 
HREF="https://www.bank.com/acct.html?749394889300"
>this link</A>. 
</BODY> 
</HTML> 

Notice that the message body includes an html page that 
describes the problem for a human user and gives that user 
an alternative link to click. Any 426 response should include 
both these items to support Web browsers that may not un-
derstand the upgrade request.  

If the client does understand the upgrade request, it can ini-
tiate the upgrade as above. Note that the client does not im-
mediately begin the tls handshake. 
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One final issue for tls upgrades is support for proxy servers. 
If a client used the approach described above when commu-
nicating through a proxy, it would secure the communication 
only to that proxy. Once the data passed beyond the first 
proxy, it would no longer be secured by tls. Because a client 
requesting a tls upgrade presumably wants to establish the 
tls session with the ultimate host, not with an intermediate 
proxy, it should use the CONNECT method to create a tunnel to 
the final host. Once the tunnel is established, the tls up-
grade and handshake can proceed. 

4.4 Secure HTTP 

At the same time Netscape was developing the initial version 
of the Secure Sockets Layer protocol, other engineers were 
working on an alternative security protocol known as secure 
http. Although ssl has clearly established itself as the pre-
ferred approach for securing http sessions on the Web, Se-
cure http has been published as an experimental ietf 
standard. 

Secure http provides the same security services as ssl: au-
thentication, message integrity protection, and confidential-
ity (through encryption). Unlike ssl, however, secure http 
messages have the same general syntax as http. As the fol-
lowing example shows, the protocol is referred to as Secure-
HTTP, the version is 1.4, and the main method is SECURE. 

SECURE * Secure-HTTP/1.4 
Content-Type: message/http 
Content-Privacy-Domain: CMS 
 

Secure http itself defines four headers. It also defines sev-
eral additional options for http messages that it encapsu-
lates. Table 4.14 lists the secure http headers; table 4.15 lists 
the http options that are not related to cryptographic nego-
tiations, and table 4.16 lists the http options that the parties 
use to negotiate cryptographic parameters. 
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Table 4.14 Secure HTTP Headers 

Header Use 

Content-Privacy-Domain Indicates the format of the crypto-

graphic information; either CMS for the 

IETF’s Cryptographic Message Syntax or 

MOSS for MIME Object Security Services 

used with secure email. 

Prearranged-Key-Info Identifies keys that have been previously 

established between the parties; this 

header allows Secure HTTP to support 

traditional, shared key cryptography as 

well as public key cryptography. 

Content-Type Identifies the type of content protected 

by Secure HTTP; all Secure HTTP mes-

sages have the content-type of mes-
sage/http. 

MAC-Info Carries a message authentication code 

for the message, which is used to pro-

vide message integrity protection. 

 

 

Table 4.15 HTTP Options for Secure HTTP 

Option Use 

Key-Assign Assigns an identifier to a cryptographic 

key (so that key may be conveniently 

referenced later). 

Encryption-Identity Identifies the party for whom a message 

should be encrypted. 

Certificate-Info Identifies a public key certificate. 

Nonce Contains a random value used to vary 

message contents and therefore im-

prove security. 

Nonce-Echo Returns a previously provided nonce 

value.  
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Table 4.16  Secure HTTP Cryptographic Negotiation Options 

Option Use 

SHTTP-Cryptopts Contains general cryptographic 

options. 

SHTTP-Privacy-Domains Indicates the format of the cryp-

tographic information; either 

CMS for the IETF’s Crypto-

graphic Message Syntax or 

MOSS for MIME Object Security 

Services used with secure email. 

SHTTP-Certificate-Types Identifies the format of public 

key certificates. 

SHTTP-Key-Exchange-Algorithms Identifies a cryptographic algo-

rithm used to exchange keys. 

SHTTP-Signature-Algorithms Identifies a cryptographic algo-

rithm used to digitally sign mes-

sages. 

SHTTP-Message-Digest-Algorithms Identifies a cryptographic algo-

rithm used to calculate the di-

gest of a message. 

SHTTP-Symmetric-Content-Algorithms Identifies a cryptographic algo-

rithm used to encrypt message 

contents. 

SHTTP-Symmetric-Header-Algorithms Identifies a cryptographic algo-

rithm used to encrypt message 

headers. 

SHTTP-Privacy-Enhancements Lists privacy enhancements 

desired or used for a message. 

Your-Key-Pattern Identifies a cryptographic key 

using a general, pattern-

matching syntax. 

Secure http, like ssl, has its own protocol designator for 
urls. In the case of secure http, that designator is “shttp” 
(which, unfortunately, is close enough to ssl’s designator of 
“https” to create some confusion). Because secure http uses 
the same syntax as http, however, secure http does not 
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require its own default tcp port. Instead, Secure http and 
http messages can be safely intermingled on the same port, 
port 80 by default. 
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CHAPTER 5 

Accelerating HTTP — 
Improving Users’ Web Experience 
 

Not long after the first Web sites appeared on the Internet, 
engineers began looking for ways to make those sites per-
form faster. Their efforts have led to several approaches that 
accelerate http, including load balancing, advanced caching, 
ssl acceleration, and tcp multiplexing. This chapter takes a 
more detailed look at the technologies behind those accelera-
tion techniques. 

The two most widely used technologies for accelerating 
http are load balancing and caching, and these two topics 
form the bulk of this chapter. The final sections, however, 
describe some additional techniques for improving Web per-
formance—tcp multiplexing and ssl acceleration. 

5.1 Load Balancing 

As the popularity of early Web sites grew and the demand 
on their servers increased, site administrators quickly discov-
ered that load balancing was a simple way to improve their 
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sites’ scaleability and performance. The concept of load bal-
ancing is quite simple: Let many different Web servers act as 
a single Web site. As Web technology has matured, load bal-
ancing has itself grown more complex and more powerful. 
This section considers three key aspects of load balancing 
implementations. The first consideration is the location of 
the servers to be balanced. Next we look at the various ways 
that an implementation can direct the client to an appropri-
ate server. The final section describes how load balancing 
implementations decide which server is appropriate for a 
particular request. 

5.1.1 Locating Servers 

The simplest load balancing configuration places multiple 
servers right next to each other, as in figure 5.1. http re-
quests from the Internet are directed to one of these local 
servers. Even in this simple configuration, load balancing 
offers significant benefits. As traffic demand increases, the 
site administrator simply adds more servers. The new servers 
reduce the load on the existing systems, improving their per-
formance and, ultimately, the end user’s experience. Local 
load balancing can also improve a site’s reliability, particularly 
if the implementation’s technique for allocating servers can 

Internet

Web
Server

Web
Server

Web
Server  

Figure 5.1 �
Load balancing distributes requests

among many physical servers. The
Web site’s overall performance
becomes the sum of that of the

physical servers.



Accelerating HTTP 179 

 

automatically account for failed systems. And even if adding 
or deleting servers requires manual configuration, load bal-
ancing facilitates taking servers out of service for scheduled 
maintenance. 

Local load balancing focuses on the Web servers, and most 
of its benefits are targeted to servers. (Of course, any im-
provement of server performance also improves the user’s 
experience, so clients can gain considerable indirect benefit 
from local load balancing.) A different type of load balancing 
implementation, however, provides direct benefits to Web 
clients. That implementation is frequently called global load 
balancing. 

With global balancing, as figure 5.2 shows, the various Web 
servers are distributed around the Internet; unlike the case 
for local load balancing, the servers do not share the same 
facilities and infrastructure. 

The primary advantage of global load balancing is that it 
allows the client to interact with a server that is physically 
nearby. This benefit is particularly important for interna-
tional Web sites. End users in Europe can retrieve their con-
tent from servers in Europe, while clients in the Pacific 
communicate with servers in the same region. To appreciate 
the significance of this optimization, consider the limits of 

Internet

Web ServerWeb Server

Web Browser

Web Browser

 

� Figure 5.2 
Global load balancing locates servers 
at different locations around the 
Internet. In addition to combining the 
performance of multiple servers into 
one site, this architecture allows 
clients to communicate with the 
nearest server, improving the site’s 
responsiveness to diverse clients. 



180 HTTP Essentials 

 

basic physics. The speed of light in fiber imposes a round trip 
delay of nearly 100 milliseconds for traffic that must cross 
the Atlantic Ocean. Yet it takes only about 60 milliseconds 
to deliver a typical Web page over a dial-up isdn connection; 
for adsl connections the delivery time is around 10 millisec-
onds. Clearly, moving the content closer to the end user can 
have a significant effect on that user’s experience. 

Global load balancing provides benefits to more than just the 
end user. Servers also benefit. By distributing servers across 
the Internet, the Web site reduces the bandwidth require-
ments of any individual site. Global load balancing also im-
proves site availability. While local load balancing can be 
used to route around failed servers, it offers no protection 
against the failure of an entire physical site. Unfortunately, 
site failures are not necessarily rare events, as anything from a 
power failure to loss of network connectivity can effectively 
shut down a location. Global load balancing, however, pro-
tects against a physical site failure; if one of the servers is un-
available, another server, distantly located, can still function. 

5.1.2 Distributing Requests 

Once a Web site has established multiple servers for load 
balancing, the site must then determine how to distribute 
http requests among those servers. Several approaches are 
possible, including Domain Name Service responses, http 
redirects, and traffic interception. 

The simplest way to distribute http requests to multiple 
servers is to use the Domain Name System (dns). The dns 
protocol translates the host name part of a url into an ip 
address. To send requests to different Web servers, the dns 
server simply needs to respond with different ip addresses. 
As figure 5.3 indicates, in this configuration the load balancer 
acts directly as the dns server. dns requests come to the bal-
ancer, and it replies with the ip address for that particular 
request. 
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Another approach to redirection is to use http itself. The 
load balancer acts as a Web server itself. Instead of returning 
pages, however, the server responds to requests with http 
messages that point the client to a new server. Figure 5.4 
shows the general operation. Load balancers commonly re-
turn a 302 status, with the Location: header pointing to 
the real Web server for the client. 

Global load balancers can use both dns responses and http 
redirection to distribute requests to different Web servers. A 
third technique, traffic interception, is effective only for local 
load balancing.  Traffic interception requires the load balan-
cer to be positioned between the Internet and the Web serv-
ers, as figure 5.5 shows. 

Internet

3

Web Server

GET

4
200 OK

Web Server

Web Browser

1 DNS Query

2DNS Response

Load Balancer
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� Figure 5.3 
A global load balancing system may 
act as a DNS server for a site. It can 
vary the IP address in its DNS 
responses based on the location of 
the requesting client. 

� Figure 5.4 
A global load balancing system can 
also act as the primary HTTP server for 
a site. In that role it uses HTTP 
redirection to route clients to the 
actual Web site. 
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Because all http requests pass through the load balancer, it 
has complete control over their ultimate destination. Traffic 
interception does place much greater demands on the load 
balancer, however. With dns responses and http redirec-
tion, the load balancer can “redirect and forget.” Once it 
sends a request to a particular server, the load balancer 
doesn’t have to keep track of the request or its session. With 
traffic interception, however, the load balancer is, in effect, 
pretending to be the Web server. To keep from confusing the 
client, the load balancer must maintain that pretense for the 
life of the client’s session. And, in the case of communica-
tions encrypted with ssl, the load balancer may have to track 
activity across multiple http sessions. 

5.1.3 Determining a Target Server 

The final element of a load balancing strategy is determining 
which Web server is best suited to respond to a particular 
request. As the technology has developed, load balancers 
have gotten more and more sophisticated in their ability to 
make that decision. 

Internet

Web
Server

Web
Server

Web
Server

Load
Balancer

 

Figure 5.5 �
Traffic interception, sometimes called

layer 4 or layer 7 switching, acts
transparently to HTTP clients and

servers. Requests passing through the
load balancer are routed directly to an

appropriate server.
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The earliest load balancing implementations used a simple 
round-robin algorithm to route the requests. With a round 
robin, the first request is sent to host a; the next request is 
sent to host b, and so on. The process continues through all 
the Web servers and then starts over again at server a. This 
approach is particularly easy to implement with dns-based 
redirection. Most dns servers can be configured to use a 
round-robin algorithm in returning ip addresses. In such a 
configuration, a standard, “off-the-shelf ” dns server can act 
as a load balancer. 

With a round-robin algorithm, the load balancer need not 
consider the Web servers or the requesting clients. It needs 
only to remember the last redirection with which it, itself, 
responded. That approach clearly has some significant limi-
tations, however. Round-robin load balancers don’t track, 
and therefore don’t know, the status of individual servers. If a 
Web server fails or loses connectivity to the Internet, the 
load balancer won’t know that and will continue to send cli-
ents its way. Also, the round-robin approach is effective only 
if each request places a similar burden on the server. If some 
requests require more server resources than others, a round-
robin load balancer, not knowing any better, may send the 
bulk of those requests to one server, loading it disproportion-
ately. 

More advanced load balancers, particularly local load balan-
cers using traffic interception, can take a more active interest 
in the health of the Web servers they support. Because such 
balancers see all the requests and responses from the Web 
servers, they are in an excellent position to evaluate the 
health of individual servers and adjust their redirection ap-
propriately. Table 5.1 lists some of the factors a traffic inter-
ception load balancer can consider in determining a target 
server. 
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Table 5.1 Monitoring Web Server Health 

Factor Approach 

Passive Monitoring Load balancer measures the traffic flowing to 

and from individual servers to estimate their 

current load and health. 

Active Requests Load balancer issues its own requests to the 

servers periodically; these requests can be as 

simple as an Internet Control Message Protocol 

(ICMP) echo request (ping) or as sophisticated 

as a request for an actual Web page. 

Network Monitoring Load balancer uses a standard network man-

agement protocol such as the Simple Network 

Management Protocol (SNMP) to gather per-

formance statistics for each server. 

System Monitoring Load balancer uses a system monitoring proto-

col (such as Windows 2000 performance moni-

tor) to gather performance statistics for each 

server. 

Global load balancers, because they manage a distributed set 
of Web servers, have an even greater opportunity to distrib-
ute traffic. In addition to maintaining its own information 
and monitoring the status of the Web servers, a global balan-
cer can take the client itself into account in determining a 
request’s target. Indeed, that’s the main point of global load 
balancers that strive to match a client to the best server for it. 
The technique may seem a bit complicated, but, taken a step 
at a time, it is straightforward. Figure 5.6 illustrates the proc-
ess. In the figure, we’ve assumed that the global load balancer 
uses http redirection to send the client to the best server. 

The process begins in step 1, when the Web browser requests 
a Web page. This request goes to the global load balancer, 
which is acting as a virtual Web server for the Web site. In 
step 2, the global balancer communicates with the local load 
balancers at all of the physical sites. The communication is a 
probe request; in effect, the global load balancer is asking 
each local load balancer to measure its distance to the client. 
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Note that there are no standard communication protocols for 
step 2 (or the response in step 5), only proprietary ones. Con-
sequently, the global and local load balancers usually must be 
from the same vendor.  

In the next step, each local load balancer assesses its per-
formance relative to the client. For clarity, figure 5.6 shows 
only the actions of the left-most local balancer, but the local 
balancer on the right takes similar actions. In the figure, the 
local balancer issues an icmp echo request to the client; in 
step 4 the client replies with an icmp echo response. The 
time between the request and the response can serve as an 
estimate of the round-trip latency between the client and the 
local balancer. Other approaches are possible as well. The 
local balancer could initiate a trace route to the client to 
measure the number of intervening routers. Alternatively, the 
local balancer could consult its own routing information 
(e.g., Border Gateway Protocol paths) to appraise the net-
work topology between it and the client. In all cases, the lo-
cal load balancers report their results to the global load 
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� Figure 5.6 
Sites can combine local and global 
load balancing in a coordinated 
manner. In this example, the global 
balancer queries the local load 
balancers when it receives a client’s 
request; the query asks each local 
balancer to assess the performance 
between it and the client. The local 
load balancers report the results back 
to the global balancer so it can 
redirect the client appropriately. 
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balancer in step 5. From these responses the global load bal-
ancer identifies the best server for the request and, in step 6, 
redirects the client there with an http 302 status. With a 
new resource identifier, the client reissues its request to the 
selected server. 

5.2 Advanced Caching 

Caching is one of the most common ways of improving 
http performance, and, especially on the public Internet, it 
is also one of the most effective. The http specification, as 
we’ve seen, recognizes the importance of caching through its 
extensive support for the technology within the protocol it-
self. This section examines factors outside of http itself that 
are important for effective caching. It first explains the three 
different ways that caching is commonly implemented. The 
section then describes key technologies that support those 
implementations. 

5.2.1 Caching Implementations 

The Internet includes many participants—individual users, 
enterprises, Web sites, service providers, and others—almost 
all of whom can benefit from http caching. Supporting 
each of these parties effectively, however, leads to signifi-
cantly different caching implementations. All implementa-
tions rely on the http headers and options that chapter 3 
describes, but differ in the location of cache servers and the 
additional technology supporting those servers. The three 
implementation approaches are known as proxy caches, 
transparent caches, and reverse proxy caches. Table 5.2 sum-
marizes the approaches; we’ll look at each in more detail in 
the rest of this subsection. The following subsections exam-
ine the supporting technologies. 
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Table 5.2 Caching Implementations 

Implementation Benefits Technologies 

Proxy Caches Enterprises reduce the 

bandwidth required for 

their Internet connections 

and improve performance 

for their users. 

PAC, 

WPAD 

Transparent Caches Internet Service Providers 

reduce the bandwidth re-

quired for their inter-

provider connections and 

improve performance for 

their customers. 

WCCP, 

NECP 

Reverse Proxy Caches Web sites reduce the load 

on their Web servers and 

improve performance for 

their users. 

ICP, 

HTCP, 

CARP 

The most straightforward implementation of http caching 
is with proxy cache servers. Proxy caches are most common 
in enterprises and other organizations that connect many 
users to the Internet. As figure 5.7 shows, the organization 

Internet
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Internet
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Web Client

Web Client

Organization Internet Service Provider

Web Client

 

� Figure 5.7 
Organizations with Internet 
connections can run their own 
proxy cache server to improve 
performance for their users and to 
reduce the bandwidth the Internet 
connection needs. 
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deploys the proxy cache as the gateway to the Internet con-
nection. (In many cases, the proxy server system is also an 
Internet firewall.) 

To exploit the proxy cache server, users within the organiza-
tion direct their Web browsers to use the proxy for Internet 
access. All popular Web browsers include the ability to spec-
ify a proxy server; figure 5.8 shows the relevant configuration 
screen for Microsoft’s Internet Explorer. 

Properly configured, the users’ browsers will send their http 
requests to the proxy cache server rather than to actual Web 
sites. If the proxy has previously cached the content it will, as 
in figure 5.9, return the appropriate http response to the 
client immediately. 

Notice that the proxy cache server is able to return the ap-
propriate http response without sending any traffic to the 
Internet. This behavior not only saves the organization 
money by reducing the bandwidth requirements for its 
Internet access connection, it also gives the user improved 
performance. The proxy cache is able to respond to the user 
immediately, without the delay associated with communica-
tions across the Internet. 

One of the practical challenges associated with deploying a 
proxy cache server is appropriately configuring the users’ 

Figure 5.8 �
Users configure their Web browsers to
send requests to a proxy server rather

than directly to the Internet.
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Web browsers. Some browsers allow organizations to pre-
configure proxy services (along with several other options) 
and distribute the preconfigured version within the organiza-
tion. Preconfiguration is not always simple, however, and 
users that download the latest browser version directly from 
the Internet quickly defeat the organization’s efforts. A more 
foolproof approach relies on Proxy Auto Configuration (pac) 
scripts and the Web Proxy Auto-Discovery Protocol (wpad). 
A pac script is a simple JavaScript file with proxy configura-
tion instructions, and wpad is a simple communication pro-
tocol that allows browsers to automatically discover and 
access pac scripts stored on a network. Later subsections 
look at each in more detail. 

Internet Service Providers (isps) can also realize significant 
benefits from http caching. The benefits are similar: isps 
reduce the amount of bandwidth they require for their con-
nections to other isps or the Internet backbone, and they 
provide more responsive Web browsing to their customers. 
Figure 5.10 shows a typical cache server deployment at an 
isp; notice that the cache server is located on the isp’s net-
work rather than the organization’s. Also, the figure shows an 
Internet connection for an enterprise or other organization 
to highlight the differences with figure 5.7. The technique is 
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� Figure 5.9 
If a proxy server already has a copy of 
a resource in its local cache, it can 
respond directly to the client without 
communicating with the origin server.
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equally effective, however, for isps serving dial-up or other 
individual users. 

The most significant difference between figures 5.10 and 5.7 
is the type of cache server. Instead of a proxy cache server, 
isps typically use transparent cache servers. The reason for 
the difference is the configuration burden. Unlike an enter-
prise or organization, isps cannot easily mandate that all 
Web users configure the appropriate proxy settings in their 
browsers. Furthermore, pac scripts and the wpad protocol 
are generally effective only within a single local network, so 
isps cannot benefit from their use. 

Transparent cache servers compensate for these restrictions. 
As the name implies, transparent caches are invisible to the 
end users. Web browsers don’t need any special configuration 
to use a transparent cache; they simply access remote Web 
sites normally. The key to the operation of a transparent 
cache is cooperation between the isp’s routers and the cache 
server. As figure 5.11 shows, each access router continuously 
examines traffic from the isp’s customers, looking for http 
messages. (Routers recognize those requests by their tcp 
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Figure 5.10 �
Transparent cache servers are often

administered by Internet access
providers rather than user

organizations. They avoid forcing
users to configure their browsers with

proxy server information.
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port number; generally 80.) When the router detects an 
http message, it intercepts the message and, in effect, sends 
it on a detour to the transparent cache server. If the cache 
server has a local copy of the content, it can respond imme-
diately as in figure 5.11. Otherwise it sends the request on to 
the actual Web server. (A slight variation relies on http 
switches, rather than routers, to redirect http messages. The 
effect is the same, however.) 

The key to effective transparent caching is coordinating the 
operation of the access router and the cache server. Cisco’s 
proprietary Web Cache Communication Protocol (wccp) is 
one approach for this coordination; the Network Element 
Control Protocol (necp) is a newer, but standard, protocol 
with similar functions. 

The third type of cache implementation, reverse proxy cach-
ing, moves control over caching to Web sites. Although it’s 
easy to see the improvement caching offers to end users—
quicker, more responsive Web browsing—caching can also 
benefit Web sites. Indirectly, of course, the Web site’s image 
improves whenever end users’ experiences improve. In addi-
tion, whenever a cache provides http content on behalf of 
an origin server, the server itself has one less http exchange 
to process. Caching reduces the bandwidth required by Web 
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Cache Controversies 

Although transparent caching has 

obvious benefits to both ISPs and 

end users, it is not free from 

controversy. Many in the Internet 

community object to the very idea 

behind transparent caches—users’ 

requests are redirected from their 

intended destination without the 

users’ knowledge or consent. HTTP 

acceleration is generally 

considered a beneficial 

application of this technology, but 

it is easy to imagine more 

disreputable uses. Users 

attempting to access a Web site 

could be “detoured” to a Web site 

of a competitor, for example, or 

they could be redirected to a 

phony version of the intended site. 

Despite the controversy, ISPs are 

expected to continue to deploy 

transparent cache servers in their 

networks.

� Figure 5.11 
To force user requests to traverse a 
transparent cache server, a router (or 
switch) must explicitly reroute those 
requests to the cache. 



192 HTTP Essentials 

 

servers for their connection to the Internet, and it reduces 
the load on those servers by reducing the number of http 
transactions they must handle. 

Given these benefits, it is not surprising that Web sites don’t 
just rely on end users and their isps to implement http 
caching. Reverse proxy caching allows Web sites to take con-
trol of caching themselves, independently of users and isps. 

Figure 5.12 illustrates the main concept behind reverse proxy 
caching. The Web site or, more commonly, a service provider 
acting on behalf of the Web site, deploys a network of re-
verse proxy cache servers throughout the Internet. The more 
widely they can be dispersed, and the farther away from the 
origin server, the better. 

Once the cache servers are in place, end users can receive the 
Web site’s content directly from the nearest cache. As figure 
5.13 indicates, different users are likely to communicate with 
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Figure 5.12 �
Web sites or Web hosting

providers can deploy a network
of reverse proxy cache servers

throughout the Internet.
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different cache servers, depending on their location on the 
Internet. 

This discussion is probably starting to sound a lot like our 
description of global load balancing, and, indeed, the distinc-
tion is not very fine. At the risk of exaggerating differences 
between the two, we note that global load balancing typically 
relies on multiple Web sites with full-featured Web servers, 
while reverse proxy caches are often special-purpose devices 
tailored for caching. Also, the Web sites that support global 
load balancing tend to be run by organizations and Web 
hosting providers; reverse proxy servers, on the other hand, 
are most effective if they are located on the networks of 
Internet access providers. 

There is one aspect of reverse proxy caching that makes it 
significantly different from other forms of caching: Reverse 
proxy caching relies on a network of cache servers. Indeed, 
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� Figure 5.13 
With a network of reverse proxy cache 
servers in place, a Web site’s users can 
be effectively serviced by nearby 
servers. Since the cache servers are 
closer to the clients, they can respond 
more quickly. Cache servers also 
relieve some of the processing burden 
on the origin server, and they reduce 
that server’s bandwidth requirements. 
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the more servers that are part of its network, the more effec-
tive reverse proxy caching becomes, because one of the main 
objectives of reverse proxy caching is to disperse content as 
widely as possible. 

The cache server network also allows for more sophisticated 
caching. In an isolated deployment, a cache server that does 
not have a copy of the requested content has only one choice: 
Relay the request to the origin server. A network, however, 
offers entirely new options. Instead of burdening the origin 
server for new content, networked cache servers can pass 
requests among each other. If a nearby server does have a 
copy, it may respond more quickly than the origin server. 

These potential optimizations have led engineers to develop 
several protocols for coordinating cache server networks. 
Cisco’s Web Cache Communication Protocol (mentioned 
previously) provides such functionality, as do standard proto-
cols such as the Internet Cache Protocol (icp) and the Hyper 
Text Caching Protocol (htcp). 

5.2.2 Proxy Auto Configuration Scripts 

One of the major problems facing any deployment of tradi-
tional proxy servers is configuring end users’ browsers appro-
priately. Figure 5.8 shows the standard dialog box for 
Microsoft’s Internet Explorer. That setting alone is compli-
cated enough for end users to find and understand, but 
imagine the difficulties if an installation requires the “Ad-
vanced” setting at which that dialog box hints. A dialog box 
such as the one in figure 5.14 will certainly challenge average 
users. 

To save end users from having to manually configure their 
proxy settings, and to give network administrators much 
more flexibility in defining proxy configurations, Netscape 
created the concept of a Proxy Auto Configuration (pac) 
script. Other browser manufacturers have agreed to support 
pac scripts as well. There are, however, slight differences in 

Status of Caching Protocols 

As of this writing, HTTP caching 

and caching protocols are rapidly 

evolving technologies. Although a 

few protocols have been 

standardized, the industry 

acknowledges that those 

protocols have several 

deficiencies. New protocols with 

essential new functionality, 

however, are still in the early stage 

of their development. In these 

circumstances, it does not seem 

appropriate to describe the details 

of each protocol. This text, 

therefore, focuses on an overview 

of the protocols’ operation rather 

than details. Readers are 

encouraged to consult the 

“References” section of this book 

for information on obtaining the 

latest versions of each protocol 

specification. 
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the more subtle and advanced aspects of the pac format, so 
anyone developing pac scripts for multiple browsers should 
stick to the basic pac capabilities. 

The pac format itself is a file containing JavaScript code. 
The file can contain any number of functions and variables, 
but it must include the function FindProxyforURL(). The 
browser will call this function with two parameters, url and 
host, before it retrieves any url. The url parameter contains 
the url that the browser wants to retrieve, and the host pa-
rameter contains the host name from that url. (This second 
parameter is actually redundant, but, because extracting the 
host from the url is an extremely common operation, the 
pac format makes it a separate parameter as a convenience to 
pac developers.) 

The FindProxyForURL() function returns a single character 
string. That string lists, in order, the methods that the 
browser should use to retrieve the url; table 5.3 lists the pos-
sible values. The string separates individual methods by 
semicolons. If the string is empty, the browser should contact 
the host directly. 

 

� Figure 5.14 
Manually configuring the full range of 
proxy services for a browser can be 
complicated, as this dialog box shows.
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Table 5.3 PAC Retrieval Options 

Option Meaning 

DIRECT Connect to the host directly without using a 

proxy. 

PROXY host:port Connect to the indicated proxy server. 

SOCKS host:port Retrieve the URL from the indicated SOCKS 

server. 

An example pac file, shown below, simply returns the name 
of a proxy server for any url. 

function FindProxyForURL(url, host) 
{ 
   return "PROXY proxy.hundredacrewoods.com:8080"; 
} 

In addition to identifying the FindProxyForURL() function, 
the pac format defines several functions that the browser can 
provide on behalf of a pac script developer. These functions, 
listed in table 5.4, provide many utilities that pac script de-
velopers are likely to find useful. 

Table 5.4 PAC Helper Functions 

Function Use 

isPlainHostName() Indicates if a host name is not a domain 

name (e.g., has no dots). 

dnsDomainIs() Indicates if the domain of a host name is 

the indicated domain. 

localHostOrDomainIs() Indicates if a host name is the same as a 

local name or domain name. 

isResolvable() Indicates if a host name can be resolved 

to an IP address. 

isInNet() Indicates if a host name or IP address 

belongs to the indicated network. 

dnsResolve() Resolves a host name to an IP address. 

myIpAddress() Returns the IP address of the client 

browser. 



Accelerating HTTP 197 

 

Table 5.4 continued 

Function Use 

dnsDomainLevelIs() Indicates the level in the DNS hierarchy of 

a host name. 

shExpMatch() Indicates if a string matches a specified 

shell expression. 

weekdayRange() Indicates if the current date is within the 

specified range of weekdays. 

dateRange() Indicates if the current date is within the 

specified range. 

timeRange() Indicate if the current date is within the 

specified time. 

The following example shows how a pac developer might 
use these helper functions. The example directs browsers to a 
proxy unless the requested url is for a host in the 
hundredacrewoods.com domain or for a host that is local (in 
other words, has no domain name). 

function FindProxyForURL(url, host) 
{ 
   if (isPlainHostName(host) ||  
       dnsDomainIs(host, ".hundredacrewoods.com")) 
      return "DIRECT"; 

   else 
      return 
        "PROXY proxy.hundredacrewoods.com:8080"; 
} 

Once a network administrator has created a pac script, users 
configure their browsers to locate and retrieve the script from 
a server on the network. Typically, browsers allow users to 
specify the location of a pac script via a url, as figure 5.15 
shows. 

5.2.3 Web Proxy Auto-Discovery 

Proxy Auto Configuration scripts allow network administra-
tors to hide some of the complexity of proxy configuration 
from end users, but, as figure 5.15 shows, those users must 
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still configure their browsers with the url for the pac script. 
Even that minimal configuration introduces the possibility of 
a configuration error. To simplify proxy configuration even 
further, newer browsers support a technique known as Web 
Proxy Auto-Discovery (wpad). With wpad, browsers dis-
cover the location of their pac script automatically, without 
any user configuration. 

Although it’s often referred to as a protocol, wpad is not a 
separate communications protocol itself. Rather, it is a set of 
rules for using various existing protocols. Each of these pro-
tocols can provide a pac script location; wpad simply defines 
a consistent and unambiguous procedure for using them. 

Table 5.5 Web Proxy Auto-Discovery Rules 

Step Use Procedure 

1 Required Check for a PAC location (option code 252) in a Dy-

namic Host Configuration Protocol (DHCP) message. 

2 Optional Query for a PAC location using the Server Location 

Protocol (SLP). 

3 Required Query the Domain Name System (DNS) for the ad-

dress (A) record for wpad.target.domain.name.com, 

where target.domain.name.com is the domain name 

of the client. 

 

Figure 5.15 �
To simplify proxy server

configuration, users can tell their
browsers to automatically

retrieve proxy settings from a
network server. This dialog box

tells the browser where to find its
PAC script.
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Table 5.5 continued 

Step Use Procedure 

4 Optional Query DNS for the server (SVR) record for 

wpad.tcp.target.domain.name.com. 

5 Optional Query DNS for the text record (TXT) for 

wpad.target.domain.name.com. 

6  Remove the left-most component of the domain 

name (so that target.domain.name.com becomes 

domain.name.com) and repeat steps 3-6, continuing 

until the minimal domain name is reached (i.e., don’t 

try wpad.com). 

When a client obtains the location of its pac script using the 
wpad procedure, it may find that the information is not 
complete. The Domain Name System, for example, can re-
turn a host name or address, but it cannot provide a protocol, 
port number, or path. To fill in any missing information, the 
wpad client uses values from table 5.6. 

Table 5.6 Default Values for PAC Location from WPAD 

Component Default Value (if not obtained via WPAD) 

Protocol http 

Host No default; must be obtained from WPAD procedure. 

Port 80 

Path /wpad.dat 

Once the client forms the complete url for its Proxy Auto 
Configuration script, it retrieves the pac script and config-
ures its proxy settings appropriately. As part of the retrieval 
process, the client may receive various http headers, includ-
ing, for example, an expiration time for the pac script. The 
client should honor all of the http headers that are appro-
priate for a pac script. If, for example, the script expires, the 
client should restart the entire wpad procedure. It must not 
simply reuse the previously discovered pac url. 
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The latest versions of most Web browsers default to using 
wpad to discovery proxy configuration. Figure 5.16 shows the 
dialog box that enables wpad for Internet Explorer. 

5.2.4 Web Cache Communication Protocol 

Both Proxy Auto Configuration scripts and Web Proxy 
Auto-Discovery help network administrators automatically 
configure client browsers to use proxy cache servers. They 
both require some amount of control over the users, however 
(if for no other purpose, then at least for preventing users 
from overriding the wpad process by, for example, clearing 
the checkbox in figure 5.16). Other organizations that can 
benefit from caching, particularly Internet Service Providers, 
don’t have that level of control over their users. To employ 
caching for their customers, isps typically rely on transparent 
caching. 

The Web Cache Communication Protocol (wccp) is one 
important protocol for supporting transparent caching. Cisco 
Systems developed wccp as a way for routers to learn of the 
existence of cache servers and to learn how to redirect http 
requests to those caches. 

Figure 5.17 shows the environment in which wccp operates. 
The Internet Service Provider deploys one or more cache 

 

Figure 5.16 �
Modern Web browsers can

automatically search for proxy server
configuration settings. This dialog box
lets users enable or disable Web proxy

auto-discovery.
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servers on the same local network as their access routers. 
These access routers provide Internet connectivity to the 
isp’s customers, and http requests from the customers’ cli-
ents pass through the access routers. The goal, of course, is 
for access routers to detect the http requests and redirect 
them to the cache servers. Routers and cache servers can use 
wccp to meet that goal. 

Table 5.7 summarizes the three types of messages that wccp 
defines. The rest of this subsection describes their use. 

Table 5.7 WCCP Messages 

Message Use 

WCCP_HERE_I_AM A cache server sends this message to a 

router to identify itself to the router. 

WCCP_I_SEE_YOU The router acknowledges the presence of 

a cache server with this message; it pro-

vides its current WCCP configuration to 

the cache server at the same time. 

WCCP_ASSIGN_BUCKETS A cache server tells the router how to redi-

rect HTTP traffic, indicating how much (in 

relative terms) each cache server should 

receive. 

Internet
Link(s) to ISP

Customers
Router

Cache ServerCache Server

Cache ServerCache Server

ISP Local Network  

� Figure 5.17 
WCCP coordinates the operation of 
an access router with a collection of 
transparent cache servers. This 
figure shows a typical 
configuration, in which the access 
router and the cache servers belong 
to an Internet service provider. 
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The coordination process begins when a cache server sends a 
wccp_here_i_am message to a router. The router responds 
with a wccp_i_see_you message, and the cache server con-
firms the communication by sending an updated 
wccp_here_i_am message. Figure 5.18 illustrates the proc-
ess. The third message is important because it verifies that 
not only can the server send messages to the router, but also 
that it can receive messages from the router successfully. The 
server confirms this by updating a field in its own 
wccp_here_i_am to reflect information from the received 
wccp_i_see_you. 

Cache servers continue to send wccp_here_i_am messages 
even after the router has recognized them. The router uses 
those messages to determine if a cache server remains 
healthy. If the router does not receive a wccp_here_i_am 
message within a certain time interval (generally, long 
enough so that the router must miss three successive mes-
sages from the server), the router considers the cache server 
to be unusable. 

Once the router has learned of participating cache servers, 
those servers can tell the router how to redirect http traffic. 
A cache server does so with an wccp_assign_buckets mes-
sage, which figure 5.19 illustrates. There is no special message 
to acknowledge this information, but wccp_i_see_you mes-
sages from the router confirm the assignment by including 
the redirection table explicitly. Although routers accept 
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Figure 5.18 �
Cache servers announce
themselves to an access

router. The router responds,
and the cache server

acknowledges that response
in a subsequent message.
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wccp_assign_buckets from any cache server, generally only 
one server controls the redirection. As figure 5.19 indicates, 
though, the router confirms the redirection with 
wccp_i_see_you messages to all servers. 

Once http redirection is active, the router intercepts all traf-
fic to tcp port 80. It calculates a hash on the destination ip 
address, resulting in a value between 0 and 255. Based on this 
value and the wccp_assign_buckets message from the 
cache server, the router identifies a cache server for the traf-
fic. Alternatively, the wccp_assign_buckets message could 
indicate that traffic with a particular hash value should not 
be redirected at all but forwarded to the actual destination. 
Traffic that is to be redirected is encapsulated according to 
the Generic Routing Encapsulation (gre) specification using 
a protocol number of (hexadecimal) 883e. 

As this description indicates, wccp is a fairly simple proto-
col. It does not support sophisticated services such as 
redirection of traffic other than to tcp port 80; nor does it 
allow the cache servers to direct specific traffic to a specific 
server. (The wccp specification does not define the actual 
hash function the router uses, so it is impossible to predict 
which server will receive particular traffic.) The buckets 
mechanism effectively randomly distributes traffic to the set 
of cache servers. 
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� Figure 5.19 
Once the access router and cache 
servers have recognized each other, a 
cache server can tell the router how to 
divide requests among the 
participating caches. The router 
acknowledges this assignment in 
WCCP messages to all cache servers. 
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5.2.5 Network Element Control Protocol 

The Network Element Control Protocol (necp) addresses 
many of the limitations of the Web Cache Communication 
Protocol. Like wccp, necp provides a way for cache servers 
to communicate with routers, switches, and other network 
elements. As table 5.8 indicates, necp has three significant 
enhancements compared to wccp. 

Table 5.8 Differences between the WCCP and the NECP 

Additional Features Available in NECP 

• Servers can specify which traffic is redirected by the network ele-

ment (by protocol and destination port). 

• Servers can distinguish specific traffic (by source IP address and 

other characteristics) which should not be redirected. 

• Communications between servers and network elements may be 

secured so that the identities of the communicating systems are 

authenticated. 

The first significant difference between necp and wccp is 
that necp allows cache servers to indicate which traffic 
should be redirected. Servers specify the protocol identifier 
(usually tcp or udp) and destination port. In contrast, wccp 
always redirects tcp traffic to port 80. 

As a further refinement, necp allows servers to specify ex-
ceptions, traffic that the network element should not redi-
rect, even though it otherwise matches a redirection request. 
Cache servers identify exceptions by any combination of the 
traffic’s source (either by ip address or network mask), desti-
nation, protocol identifier, and port. 

The final enhancement is especially important; necp in-
cludes mechanisms to secure the communication between 
network elements and cache servers. Specifically, all mes-
sages between the two systems may include authentication 
credentials that are based on a secret value (like a password) 
shared by the server and network element. These mecha-
nisms protect against an adversary hijacking communications 

WCCP version 2 

In 1999, Cisco released products 

that support version 2 of the Web 

Cache Coordination Protocol. 

Cisco promotes WCCP version 2 as 

having several enhancements 

over version 1, most notably a 

security feature comparable to 

that of NECP. As of this writing, 

however, Cisco has not published 

the details of WCCP version 2. 
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by redirecting traffic. As long as the adversary doesn’t know 
the network element’s password, its requests for redirection 
will be rejected. 

Although necp is flexible enough to support many applica-
tions, its primary focus is on the same environments as 
wccp—a set of transparent cache servers deployed by an 
Internet Service Provider. Unlike wccp, necp intends to 
support general network elements in addition to routers, par-
ticularly application layer switches. As figure 5.20 shows, the 
cache servers are likely to be in close proximity to the net-
work element. 

The necp specification defines a total of 16 different mes-
sages, which table 5.9 lists. These messages are used in pairs; 
each of the 8 primary messages has its own acknowledgment. 

When a cache server starts operation, it establishes a tcp 
connection with the network element and sends an 
necp_init message, as in figure 5.21. The network element 
responds with an necp_init_ack. The systems maintain the 
tcp connection even after the initial message exchange; they 
use it for subsequent message exchanges. 

Network
Element

Internet
Link(s) to ISP
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Cache ServerCache Server

Cache ServerCache Server

ISP Local Network  

� Figure 5.20 
The Network Element Control 
Protocol is a more general form of 
WCCP. It supports general network 
elements such as switches and 
network access servers, as well as 
access routers. The concept is the 
same, though. The protocol 
coordinates the operation of these 
network elements with a set of 
cache servers. 
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Table 5.9 NECP Messages 

Message Use 

NECP_INIT A server indicates to a network element that 

it is up and running. 

NECP_INIT_ACK A network element acknowledges a server’s 

initialization. 

NECP_KEEPALIVE Either system queries the other for its health. 

NECP_KEEPALIVE_ACK A system responds to a health query from its 

peer. 

NECP_START A server asks a network element to begin 

forwarding traffic to it. 

NECP_START_ACK A network element acknowledges a forward-

ing request. 

NECP_STOP A server asks a network element to cease 

forwarding traffic. 

NECP_STOP_ACK A network element acknowledges a server 

request to cease forwarding. 

NECP_EXCEPTION_ADD A server defines an exception to traffic for-

warding. 

NECP_EXCEPTION_ADD_ACK A network element acknowledges the defini-

tion of a traffic forwarding exception. 

NECP_EXCEPTION_DEL A server removes a traffic forwarding 

exception. 

NECP_EXCEPTION_DEL_ACK A network element acknowledges the re-

moval of a traffic forwarding exception. 

NECP_EXCEPTION_RESET A server requests the removal of all traffic 

forwarding exceptions defined by the server. 

NECP_EXCEPTION_RESET_ACK A network element acknowledges the dele-

tion of all of a server’s traffic forwarding 

exceptions. 

NECP_EXCEPTION_QUERY A server asks for all active traffic forwarding 

exceptions. 

NECP_EXCEPTION_RESP A network element returns all active traffic 

forwarding exceptions. 
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To reassure each other that they’re still functioning, both 
systems periodically send necp_keepalive messages to the 
other. A system that receives this message replies with an 
necp_keepalive_ack. Either system can initiate this ex-
change; figure 5.22 shows the network element starting the 
exchange. 

In addition to checking the overall health of a device, the 
keep-alive exchange can determine the health of a specific 
protocol in a device. With each necp_keepalive message, 
the sender may include a list of protocol identifier and port 
number pairs. By including them, the sender asks the peer 
system to report the health of that service. For example, a 
query for the health of tcp port 80 would ask a cache server 
for the health of its http service. A queried system responds 

Network
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Cache Server
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NECP_
INIT_ACK

2

NECP_INIT

 

Network
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Cache Server
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NECP_
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1
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� Figure 5.21 
Cache servers first introduce 
themselves to network elements with 
an NECP_INIT exchange. The cache 
server begins the exchange as in this 
example’s first step. The network 
element acknowledges it in step 2. 

� Figure 5.22 
NECP systems maintain their TCP 
connection by periodically 
sending NECP_KEEPALIVE 
messages; these exchanges also 
reassure each party that the 
other is still alive and functioning.
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in the necp_keepalive message. The current necp specifica-
tion defines only a general measure, an integer between 0 
and 100, for each service. The protocol framework, however, 
permits the definition of a much more specific response. 

Once the two systems have established a connection and ex-
changed initialization messages, the server can ask the net-
work element to begin redirecting traffic to it. The server 
does that with a necp_start message, which the network 
element acknowledges with an necp_start_ack, as figure 
5.23 illustrates. 

The necp_start message includes a list of services that the 
network element should begin redirecting to the cache 
server. Services are identified by their protocol identifier (tcp 
or udp) and destination port. The cache server also indicates 
a forwarding method for each service. Options include layer 
2 forwarding (in which packets are delivered unchanged di-
rectly to the server), Generic Routing Encapsulation (the 
same approach used by wccp), or layer 3 forwarding (in 
which the network element replaces the packet’s destination 
ip address with that of the server). 

The necp_stop message halts traffic redirection. The net-
work element acknowledges this message by returning an 
necp_stop_ack message. 

Network
Element

Cache Server

1

NECP_
START_ACK

2

NECP_START

 

Figure 5.23 �
The NECP_START message includes a

list of services that the network
element should begin redirecting to

the cache server. As with all NECP
messages, the receiving system (in

this case the network element)
acknowledges with a response.
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In addition to having network elements blindly forward all 
traffic of a particular service, necp lets cache servers define 
exceptions to the normal forwarding behavior. Network ele-
ments do not redirect exception traffic to the cache server 
but, instead, send it directly to its real destination.  

To inform a network element of an exception, a server sends 
it an necp_exception_add message, to which the network 
element responds with an necp_exception_add_ack.  Fig-
ure 5.24 illustrates the exchange. One message can list several 
exceptions, each of which is identified by the parameters ta-
ble 5.10 lists. 

Servers remove exceptions by sending necp_exception_del 
messages to network elements. A network element acknowl-
edges the deletion with an necp_exception_del_ack mes-
sage. A server can also delete all of its exceptions at once 
with an necp_exception_reset message, which elements 
acknowledge with an necp_exception_reset_ack. 

Servers can also query a network element to find out what 
exceptions the element has in force. The message that does 
this is the necp_exception_query, and the network ele-
ment’s response is contained in an necp_exception_resp. 

Network
Element

Cache Server

1

NECP_
EXCEPTION_
ADD_ACK

2

NECP_
EXCEPTION_
ADD

 

� Figure 5.24 
Cache servers can list exceptions to 
redirected services in 
NECP_EXCEPTION_ADD messages. 
The network element ceases to 
redirect for these exceptions. 
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Table 5.10 Defining a Forwarding Exception 

Parameter Meaning 

Scope Advisory Indicates whether the exception ap-

plies only to traffic that would be for-

warded to this server or whether the 

exception should apply to all traffic that 

passes through the network element; 

network elements may choose to ig-

nore a global scope if, for example, the 

server isn’t trusted to speak for all cache 

servers. 

TTL The length of time (in seconds) that the 

exception should be considered valid; if 

this period of time passes without an 

update from the server, the network 

element should consider the exception 

to have expired. 

Source IP Address Source IP address(es) for exception 

traffic. 

Source Address Netmask A mask indicating which bits in the 

source IP address are relevant for ex-

ception traffic (e.g., a source address of 

192.168.0.0 and netmask of 255.255.0.0 

mean that packets with a source ad-

dress of 192.168.x.x, where x is any 

value, should be considered exception 

traffic). 

Destination IP Address Destination IP address(es) for exception 

traffic. 

Destination Address Netmask A mask indicating which bits in the 

destination IP address are relevant for 

exception traffic. 

Protocol Identifier The protocol identifier for exception 

traffic, generally UDP or TCP. 

Destination Port Number The destination port number for excep-

tion traffic (e.g., 80 for HTTP). 
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In the query message the server can refine the set of excep-
tions in which it is interested by specifying exception pa-
rameters, as well as the ip address of the server that initiated 
the exception. If a server omits the initiator’s address, or if it 
specifies an address other than its own, the server can dis-
cover exceptions installed by other cache servers. 

An important characteristic of all requests that servers make 
of network elements is their effect on existing traffic sessions. 
Requests, whether to start or stop forwarding or add or de-
lete exceptions, have no impact on sessions already in pro-
gress. If, for example, a client has already begun an http 
session with the actual destination, a cache server’s request to 
receive redirected http traffic will have no effect on that 
client’s session. New sessions begun by this client (or any 
other) will be forwarded appropriately, but existing sessions 
continue unchanged. 

This behavior has two important consequences for network 
elements and cache servers. First, it means that network ele-
ments must keep track of individual user sessions that pass 
through them. This requirement places a significant burden 
on the network element. Second, this behavior means that a 
cache server should not abruptly terminate its operation. A 
more graceful approach—in which the server stops future 
forwarding but continues to support existing sessions until 
those sessions terminate naturally—provides a much better 
service to users. 

Perhaps the most important aspect of necp’s operation is its 
security support. With necp, cache servers and network ele-
ments can negotiate the use of authentication on all mes-
sages they exchange. The authentication procedure relies on 
a secret value that the network element and cache server 
share. It is effectively a network element password that a 
cache server must know before its messages will be accepted 
by the network element. 
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When authentication is in use, a system that wishes to send 
an necp message takes that message, adds the shared secret 
to the end of it, and computes a cryptographic digest of the 
result. It then replaces the shared secret with the output of 
the digest and transmits the resulting necp message. Figure 
5.25 illustrates the process. The current version of necp speci-
fies the Secure Hash Algorithm (sha-1) function for the 
cryptographic digest calculation. 

When a network element receives an authenticated message, 
it performs the same cryptographic digest calculations. If the 
results match, then the network element is assured that the 
sending cache server knows the shared secret. If the results 
don’t match, the network element rejects the message. 

5.2.6 Internet Cache Protocol 

So far we’ve looked at protocols that cache servers can use to 
communicate with clients and with network elements such 
as routers. Equally important in some configurations is how 
cache servers communicate with each other. Of particular 

NECP Message

shared secretNECP Message

F( )

digest

shared secret+

NECP Message digest

Transmitted to Network Element  

Figure 5.25 �
To protect against malicious parties

gaining control of a network element
(and “hijacking” sessions passing

through it), the network element and
its cache servers share a secret

password. All systems combine this
password with their NECP messages

to create a cryptographic digest,
which they transmit along with the

message proper.
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interest is what happens when a client requests an object for 
which the cache server has no local copy. Of course, the 
cache server could simply request the object from the actual 
destination, but that may not be an optimal approach. There 
could well be another cache server nearby that does have the 
object, and requesting it from that cache server would be 
much quicker than asking the actual destination. A cache 
server must answer two questions before it can take advan-
tage of this optimization, however. First, how does it know 
which other cache servers have a local copy of the object? 
Second, if multiple servers have a copy, how can it determine 
which is the closest? The Internet Cache Protocol (icp) pro-
vides answers to both. 

The Internet Cache Protocol is actually a very simple proto-
col. It is designed specifically for a deployment like that of 
figure 5.26. In that figure, the user’s http GET request arrives 
at Cache Server a. That server doesn’t have the object, so it 
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Cache Server BCache Server A

1 HTTP GET

2 ICP QUERY

2 ICP ECHO Cache Server C

2

ICP QUERY

 

� Figure 5.26 
A cache server can use the Internet 
Cache Protocol to query other cache 
servers on the network. At the same 
time, it can send a simple echo 
message to the origin server. 
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immediately sends three messages simultaneously. It sends 
icp queries to each of the cache servers it knows about, and it 
sends an icp echo message to the actual destination, the ori-
gin Web server for the object. 

When the cache servers and origin server receive these icp 
messages, they respond as in figure 5.27. The first response 
arrives from Cache Server b. That response indicates that 
Server b does not have a local copy in its cache. The next 
response, from Cache Server c, indicates that Server c does 
have a local copy. The final response is from the origin 
server; it is simply an echo of Cache Server a’s original mes-
sage. (The icp echo message is transmitted to the server’s 
udp echo port, so that even servers that don’t understand icp 
will respond.) 

With these responses, Cache Server a now knows that 
Server c has a copy of the object and that Server c was able 

Origin
Web Server

Web Client
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3 ICP MISS

5 ICP ECHO Cache Server C

4

ICP HIT

 

Figure 5.27 �
Cache servers respond to ICP queries

with an indication of whether the
requested object is in their local
cache. The origin server merely

responds to the echo request
(because it should always have a copy

of the object). In this example cache
server B responds first, but it indicates

a cache miss. Cache server C is the
next to respond, and it does have a

copy of the object.
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to respond more quickly than the origin server. Server a can 
assume, therefore, that the quickest way to retrieve the object 
is by requesting it from Server c. As figure 5.28 shows, Server 
a does exactly that and then returns the requested object to 
the client. 

One of the important assumptions behind icp is that the icp 
query exchange can be very quick. Otherwise, the time taken 
for the icp query would cancel out any time saved by query-
ing a nearby cache server. For that reason, icp messages are 
short, simple, and carried in udp datagrams rather than tcp 
connections. 

Table 5.11 lists the icp message types and their use. By design, 
icp is a simple protocol, and there are few complications in 
its operation. One extra feature that isn’t obvious from the 
table is round-trip time measurements. When a cache server 
sends an icp query, it can ask the responders to report their 
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200 OK8
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� Figure 5.28 
The original cache server routes the 
request to the system with the object 
that responded the quickest. Here, 
that was cache server C. Cache A, 
therefore, forwards the request to C 
and relays C’s response to the client. 
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round-trip time to the origin server. This value allows the 
original requesting server to estimate how long it would take 
for those servers to retrieve the object should they not have a 
copy in their local caches. 

Table 5.11 ICP Messages 

Type Use 

Query Asks if the recipient has a copy of an object, identified 

by a URL, in its local cache; this message also includes 

the IP address of the original requester (the HTTP 

client) and an indication of whether the sender is 

willing to receive the entire requested object in an 

ICP response. 

Hit A positive response to a query; the sender does have 

a local copy of the object. 

Hit/Object Not only does the sender have a local copy of the 

requested object, it is including that object in its 

response. 

Miss A negative response to a query; the sender does not 

have a local copy of the object (but is willing to get 

one if asked). 

Miss/No Fetch The sender does not have a local copy of the re-

quested object and the recipient should not ask for it. 

Denied The sender is unwilling to supply the requested 

object. 

Error The sender couldn’t understand a query it received. 

Echo A dummy ICP message that can be sent to the UDP 

echo port of a system that doesn’t understand ICP; 

there are two versions of this message, one intended 

for origin servers and the other intended for remote 

cache servers. 

5.2.7 Hyper Text Caching Protocol 

The Hyper Text Caching Protocol (htcp) addresses some of 
the shortcomings of icp, and it adds a few additional capa-
bilities. With htcp, cache servers can probe the contents of 

Shortcomings of ICP 

Unlike most of the other protocols 

this section describes, ICP is 

relatively stable and has been 

implemented in many products. 

Unfortunately, it is rather primitive 

and suffers from several 

shortcomings when applied to 

HTTP caching. The major problem 

is that ICP includes only the 

requested object in its queries. 

Most notably, it does not include 

the HTTP headers that the client 

included in its original HTTP 

request. In some cases those 

headers are critical to the 

response and may determine the 

content of the returned object. 

Web servers often use cookies, for 

example, to identify a returning 

user and provide personalized 

content.  Obviously, in those cases, 

ICP will interfere with the server’s 

intentions. 
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other cache servers to find out if an object can be retrieved 
more quickly from a nearby cache rather than the origin 
server. Unlike icp, htcp allows the sending server to include 
a copy of all the http headers in the client’s original request, 
so the responding server can more accurately determine if its 
local copy really satisfies the client. In addition, htcp allows 
cache servers to actively monitor the contents of each other’s 
caches; with this feature they can tell when a neighbor adds 
new objects to its cache, modifies objects in its cache, or de-
letes objects from its cache. Through htcp, servers can also 
actively modify the contents of another’s cache, adding ob-
jects to that cache or deleting them from it. Because htcp 
can be used to modify the content of a server’s local cache, its 
messages may include authentication information that vali-
dates the identity of the sender. 

Table 5.12 lists the different types of htcp messages. In con-
trast with icp, htcp doesn’t have separate acknowledgment 
message types. Rather, each message includes a flag that in-
dicates whether it is a request or a response. 

 

Table 5.12 HTCP Messages 

Type Use 

NOP No operation, although this can be used to probe the round-trip 

time between servers. 

TST Test, used to determine if an object is present in a server’s local 

cache. 

MON Monitor, used to monitor activity in a server’s local cache; a MON 

request initiates a monitoring session, while MON responses 

report additions to, deletions from, replacements, and refreshes 

of the monitored server’s cache. 

SET Sends information about an object to a cache server including, 

for example, updated cache or expiration headers. 

CLR Clear, directs a server to delete an object from its local cache. 
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The Test exchange resembles the icp query. As figure 5.29 
shows, a cache server initiates it when a client requests an 
object that is not in its local cache. That server sends simul-
taneous tst request messages to all its neighbor caches, 
specifying both the object requested and any http headers 
in the client’s original request. In the example of the figure, 
server b replies with a tst response that indicates the object 
is not present in its cache while, a short time later, server c’s 
tst response indicates that it does have a copy. With this 
information, cache server a can send an http request to 
server c requesting the object. 

The htcp tst response not only indicates whether the 
sender has a copy of the object; it can also provide informa-
tion about that object. Most notably, the response indicates 
the http method, uri, version, and headers used to request 
the object, as well as the http headers included in the origin 
server’s response. The tst response may also include special 
cache information listed in table 5.13. 

Web Client

Cache Server B

Cache Server A

1 HTTP GET

2 HTCP TST

2

HTCP TST

Cache Server C

3
HTCP TST
(not
present)

4
HTCP TST
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Figure 5.29 �
The Hyper Text Caching Protocol is
a more sophisticated version of the

Internet Cache Protocol, but its
basic operation is very similar. A

cache server sends HTCP TST
messages to other cache servers to

try to locate a nearby source for the
requested object.
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Table 5.13 Cache Information HTCP May Provide 

Item Meaning 

Cache-Vary The content of the object varies depending on the 

value of the indicated HTTP headers. 

Cache-Location The indicated cache servers have a copy of this 

object. 

Cache-Policy The object may not be cacheable or shareable 

among cache servers, or its content could change 

depending on HTTP cookies. 

Cache-Flags The server doesn’t know all the HTTP response 

headers that apply to the object. 

Cache-Expiry The object expires at the indicated time. 

Cache-MD5 A cryptographic checksum of the contents of the 

object. 

Cache-to-Origin The round-trip time to the origin server. 

A unique feature of htcp is the ability for one cache server 
to monitor the contents of another server’s local cache. A 
cache server that is quite remote from an origin server, for 
example, can monitor another cache server that is local to the 
origin. The local server, especially if it is positioned between 
the Internet and the origin server, may be able to track all 
requests for objects. Such a local server would be well posi-
tioned to know about all objects on the origin server, so by 
monitoring its cache, the remote cache server could keep up 
to date with the origin server’s content. 

Figure 5.30 shows this scenario. The process begins when the 
remote server sends an htcp mon request to the local server. 
This request identifies a channel through which the local 
server should inform the remote server of any changes to its 
cache contents. The mon request includes a time period for 
the channel. If the remote server doesn’t renew the channel 
(with another mon request) within that time, cache updates 
from the local server automatically cease. 

Once the channel is established, the local cache server sends 
a mon response to the remote server every time its cache 
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contents change. Each mon response includes the time re-
maining for the life of the channel, the action that occurred 
in the local cache, the reason for the action, and the identity 
of the object affected, as table 5.14 indicates. 

Table 5.14 HTCP Monitor Responses 

Field Meaning 

TIME How many seconds remain in the monitor channel’s life 

(unless refreshed). 

ACTION The change that has occurred in the local cache. 

 0 An object has been added to the cache. 

 1 An object in the cache has been refreshed. 

 2 An object in the cache has been replaced. 

 3 An object in the cache has been deleted. 

REASON The reason for the change in the cache. 

 0 Unspecified reason. 

 1 A client fetched the object. 

 2 A client fetched the object with caching disallowed. 

 3 The cache server prefetched the object. 

 4 The object expired, as per its headers. 

 5 The object was purged to conserve cache space. 

Internet

Local Cache Server

Remote Cache Server 1
HTCP MON
(Request)

3

Origin
Web Server

2

HTCP MON
(Response)

 

Figure 5.30 �
HTCP allows one cache server to

monitor another’s contents. As
content on the local cache server

changes, the server sends MON
responses to the remote cache

server. This operation can help the
remote server keep its cached

contents up to date even before a
client requests an object.
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Table 5.14 continued 

Field Meaning 

IDENTITY The object in the local cache that changed. 

 METHOD The HTTP method used to access the 

object. 

 URI The object’s Uniform Resource Identifier. 

 VERSION The HTTP version used to access the 

object. 

 REQ-HDRS The HTTP headers included in the request 

for the object. 

 RESP-HDRS The HTTP headers included in the re-

sponse to the request. 

 ENTITY-HDRS HTTP headers applying to the object. 

 CACHE-HDRS Cache information about the object. 

The htcp mon exchange allows a cache server to ask for 
updates to another’s cache. The protocol can also operate in 
reverse: Cache servers can, without invitation, tell other serv-
ers to modify their caches. The messages to do that are set 
and clr. As figure 5.31 shows, even an origin Web server can 
use htcp to keep cache servers supporting it up to date. The 
set and clr messages are tools that the origin server could 
use to do so. A set message updates the headers correspond-
ing to an object including, for example, its expiration time. A 

Internet

Cache Server

HTCP SET
or

HTCP CLR

Origin
Web Server  

� Figure 5.31 
Origin servers may use HTCP to 
proactively update cache servers, 
telling them, for example, when HTTP 
headers corresponding to a cached 
object have changed. 
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clr message asks a cache server to remove the object from its 
cache entirely. 

Because the set and clr messages allow an external system 
to modify the contents of a server’s cache, it is important to 
be able to verify the identity of the system that sends them. 
To provide that verification, htcp defines a mechanism for 
authenticating system identity. The approach is very similar 
to that of the Network Element Control Protocol. The 
communicating systems must first share a secret value. A 
sending system adds the contents of the message to the se-
cret key, computes a cryptographic digest of the combina-
tion, and appends that digest result to the message. The 
receiving system performs the same computation and makes 
sure that the digest results match. If they don’t match, the 
receiving system rejects the htcp message. 

5.2.8 Cache Array Routing Protocol 

Another protocol that can enhance the performance of http 
caching is the Cache Array Routing Protocol (carp). This 
protocol allows a collection of cache servers to coordinate 
their cache contents in order to use their cache resources 
more efficiently. The typical environment for carp, shown in 
figure 5.32, is somewhat different from the configurations 
we’ve previously considered. That environment assumes a 
collection of cache servers co-located with each other, a con-
figuration commonly called a server farm. The figure shows 
the server farm located behind a proxy server on an Enter-
prise location; the same principles apply to a cache server 
farm deployed behind a transparent cache on the premises of 
an Internet Service Provider. 

If the cache server farm operates most efficiently, no object 
will be stored by more than one cache server. In addition, the 
system that serves as the entry point to the server farm (the 
proxy server in figure 5.32) will know which cache server 
holds any object. The Cache Array Routing Protocol accom-
plishes both. 
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Interestingly, carp is not actually a communication protocol 
at all. It achieves its goals without any explicit communica-
tions between the entry point and cache servers, or among 
the cache servers themselves. Instead, carp is a set of rules 
for the entry point to follow. The rules consist of an array 
configuration file and a routing algorithm. The configuration 
file tells the entry point which cache servers are available, 
and the routing algorithm tells the entry point which cache 
server should be queried for any particular object. 

Note that the cache servers themselves don’t necessarily have 
to do anything special to support carp. They simply operate 
as regular cache servers. When a request arrives for an object 
not in the local cache, the server retrieves it and then adds it 
to the cache. The key to carp is the routing algorithm. En-
try points that use it correctly always ask the same cache 
server for the same object. Subsequent client requests for an 
object will always be directed to the cache server that has 
already retrieved that object. 

The entry point reads its carp configuration file when it be-
gins operation. That file consists of global information, 
shown in table 5.15, and a list of cache servers.  
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� Figure 5.32 
The Cache Array Routing Protocol 
(which isn’t really a communications 
protocol at all) defines a set of rules 
that coordinate the operation of a 
collection of cache servers, primarily 
to avoid redundant caching. 
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Table 5.15 Global Information in the CARP Configuration 

Field Use 

Version The current CARP version is 1.0. 

ArrayEnabled Indicates whether CARP is active on the server. 

ConfigID A unique number used to track different versions of 

the configuration file. 

ArrayName A name for the array configuration. 

ListTTL The number of seconds that this array configuration 

should be considered valid; the entry point should 

refresh its configuration (perhaps over a network) 

when this time expires. 

Table 5.16 lists all the information the file contains about 
each cache server, but the important parameters are the 
server’s identity and a value called the Load Factor. The Load 
Factor is important because it influences the routing algo-
rithm. Cache servers with higher load factors are favored 
over servers with lower load factors. An administrator con-
figuring a carp server farm, for example, should assign 
higher load factors to those cache servers with larger caches 
and faster processors. 

Table 5.16 Server Information in CARP Configuration File 

Field Use 

Name Domain name for the cache server. 

IP address IP address of the cache server. 

Port TCP port on which the cache server is listening. 

Table URL URL from which the CARP configuration file may be 

retrieved. 

Agent String The vendor and version of the cache server. 

Statetime The number of seconds the cache server has been 

operating in its current state. 

Status An indication of whether the cache server is able to proc-

ess requests. 

Load Factor How much load the server can sustain. 

Cache Size The size (in MB) of the cache of this server. 
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Table 5.17 details the carp routing algorithm. Note that steps 
1 and 2 are performed before the entry point begins redirect-
ing http requests; they are not recalculated with each new 
request. 

Table 5.17 The CARP Routing Algorithm for Entry Points 

Step Action 

1 Convert all cache server names to lowercase. 

2 Calculate a hash value for each cache server name. 

3 As an HTTP request arrives, convert the full URL to lowercase. 

4 Calculate a hash value for the complete URL. 

5 Combine the URL’s hash value with the hash values of each 

cache server, biasing the result with each server’s load factor; 

the resulting values are a “score” for each cache server. 

6 Redirect the request to the server with the highest score. 

5.3 Other Acceleration Techniques 

While load balancing and caching are the two most popular 
techniques for accelerating http performance, Web sites 
have adopted other acceleration techniques as well. Two par-
ticularly effective approaches are specialized ssl processing 
and tcp multiplexing. Strictly speaking, neither actually di-
rectly influences the http protocol operation; however, both 
techniques are so closely associated with Web performance 
that any http developer should be aware of their potential. 

5.3.1 Specialized SSL Processing 

As section 4.2 explains, the Secure Sockets Layer (ssl) is the 
most common technique—by far—for securing http ses-
sions. Unfortunately, ssl relies on complex cryptographic 
algorithms, and calculating those algorithms is a significant 
burden for Web servers. It can require, for example, one 
thousand times more processor resources to perform ssl cal-
culations than to simply return the requested object. A secure 
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Web server may find that it is doing much more crypto-
graphic processing than returning Web pages. 

To address this imbalance, several vendors have created spe-
cial-purpose hardware that can perform cryptographic calcu-
lations much faster than software. Such hardware can be 
included in add-in cards, on special-purpose modules that 
interface via scsi or Ethernet, or packaged as separate net-
work systems. In all cases, the hardware performs the ssl 
calculations, relieving the Web server of that burden. 

Figure 5.33 compares a simple Web server configuration with 
one employing a separate network system acting as an ssl 
processor. The top part of the figure emphasizes the fact that 
a simple configuration relies on the Web server to perform 
both the ssl and the http processing. In contrast, the bot-
tom of the figure shows the insertion of an ssl processor. 
That device performs the ssl processing. After that process-
ing, the device is left with the http connection, which it 
merely passes through to the Web server. To the Web server, 
this looks like a standard http connection, one that does not 
require ssl processing. The ssl processor does what it does 
best—cryptographic computations—while the Web server 
does its job of responding to http requests. 

Client Server

Client
Server

SSL Processor

SSL
Session

HTTP
Connection

 

Figure 5.33 �
An external SSL processor acts as an

endpoint for clients’ SSL sessions, but
it passes the HTTP messages on to the

Web server. This configuration
offloads SSL’s cryptographic

computations from the Web server
and onto special purpose hardware

optimized for that use.
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5.3.2 TCP Multiplexing 

Although the performance gains are not often as impressive, 
tcp multiplexing is another technique for relieving a Web 
server of non-essential processing duties. In this case, the 
non-http processing is tcp. Take a look at the simple Web 
configuration of figure 5.34. In that example, the Web server 
is supporting three clients. To do that, it manages three tcp 
connections and three http connections. 

Managing the tcp connections, particularly for simple http 
requests, can be a significant burden for the Web server. Re-
call from the discussion of section 2.1.2 that, although it al-
ways takes five messages to create and terminate a tcp 
connection, an http GET and 200 OK response may be car-
ried in just two messages. In the worst case, a Web server 
may be spending less than 30 percent of its time supporting 
http. 

External tcp processors offer one way to improve this situa-
tion. Much like an ssl processor, a tcp processor inserts it-
self between the Internet and the Web server. As figure 5.35 
indicates, the tcp processor manages all the tcp connections 
to the clients while funneling those clients’ http messages 
to the Web server over a single tcp connection. The tcp 
processor takes advantage of persistent http connections 
and pipelining. 

Client
Server

Client

Client

TCP
Connection

HTTP
Connection

 

� Figure 5.34 
Each HTTP connection normally 
requires its own TCP connection, 
forcing Web servers to manage TCP 
connections with every client. For 
Web sites that support millions of 
clients, this support can become a 
considerable burden. 
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External tcp processors are not effective in all situations. 
They work best for Web sites that need to support many cli-
ents, where each client makes simple http requests. If the 
Web server supports fewer clients, or if the clients tend to 
have complex or lengthy interactions with the server, then 
tcp processors are less effective. In addition, the tcp proces-
sor must be capable of processing tcp faster than the Web 
server, or it must be capable of supporting more simultane-
ous tcp connections than the Web server. 
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Connections
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Figure 5.35 �
A TCP processor manages individual

TCP connections with each client,
consolidating them into a single TCP

connection to the Web server. This
single connection relies heavily on

HTTP persistence and pipelining.
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APPENDIX A

HTTP Versions — 
Evolution & Deployment of HTTP 
 

Until now, this book has described version 1.1 of http. That 
version, however, is actually the third version of the protocol. 
This appendix takes a brief look at the protocol’s evolution 
over those three versions and the differences between them. 
The last subsection assesses the support for the various fea-
tures of version 1.1 by different implementations. 

A.1 HTTP’s Evolution 

The Hypertext Transfer Protocol has come to dominate the 
Internet despite a rather chaotic history as a protocol stan-
dard. As we noted in chapter 1, http began as a very simple 
protocol. In fact, it could hardly be simpler. The original 
proposal by Tim Berners-Lee defined only one method—
GET—and it did not include any headers or status codes. The 
server simply returned the requested html document. This 
protocol is known as http version 0.9, and despite its sim-
plicity, it occasionally shows up in Internet traffic logs even 
today. 



230 HTTP Essentials 

 

Vendors and researchers quickly realized the power of the 
hypertext concept, and many raced to extend http to ac-
commodate their own particular needs. Although the com-
munity worked cooperatively and openly enough to avoid 
any serious divergences, the situation evolved much as figure 
a.1 depicts, with many different proprietary implementations 
claiming to be compatible with http 1.0. 

Without a true standard, however, developers grew increas-
ingly concerned about the possibility of http fragmenting 
into many incompatible implementations. Under the aus-
pices of the Internet Engineering Task Force (ietf), leading 
http implementers collected the common, and commonly 
used, features of many leading implementations. They de-
fined the resulting specification as http version 1.0. In some 
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Figure A.1 �
HTTP diverged from the original

version 0.9 specification into many
vendors’ proprietary

implementations. The specification for
HTTP version 1.0 attempted to

capture the most common
implementation practices. Although

vendors have continued to create
their own implementations based on

incomplete versions of the HTTP 1.1
specification, it is hoped that the final

release of HTTP version 1.1
specifications will allow

implementations to converge on a
single standard.
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ways, writing the specification after products are already 
widely deployed seems backwards, but it did allow the work-
ing group to take into account a lot of operational experi-
ence. The working group then embarked on an effort to 
create a true http standard, which would be called http 
version 1.1. 

Unfortunately, the effort to define http version 1.1 took a lot 
longer than originally anticipated, and many draft specifica-
tions for version 1.1 were published and discussed. Vendors 
implemented products conforming to these draft specifica-
tion and claimed http 1.1 compliance, even though no offi-
cial http 1.1 standard yet existed. 

By now, though, the situation is finally starting to stabilize. 
The standard for http version 1.1 is finally complete; im-
plementations are beginning to converge on a common in-
terpretation of the standard, and the community is starting 
to create formal compliance tests to ensure interoperability. 
As the World Wide Web extends beyond personal com-
puters to appliances, personal digital assistants, wireless tele-
phones, and other systems, the importance of http 1.1 as a 
true, interoperable standard will only increase. 

A.2 HTTP Version Differences 

When the Internet Engineering Task Force finalized the 
specification for http version 1.0, they recognized that the 
protocol had significant performance and scalability prob-
lems. The ietf’s parent body (the Internet Engineering 
Steering Group, or iesg) insisted that version 1.0 be pub-
lished as an “Informational” document only, and they went so 
far as to insert the following comment in the standard itself: 

The iesg has concerns about this protocol, and ex-
pects this document to be replaced relatively soon by 
a standards track document. 
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The replacement for http version 1.0, of course, is http 
version 1.1. Version 1.1 offers several significant improvements 
over version 1.0. These improvements enhance the extensibil-
ity, scalability, performance, and security of the protocol and 
its systems. The most significant changes http 1.1 introduces 
are persistent connections, the Host header, and improved 
authentication procedures. 

Table a.1 lists the http methods each version defines. Note 
that http version 1.0 includes two methods—link and 
unlink—that do not exist in version 1.1. Those methods, 
which were not widely supported by Web browsers or serv-
ers, allow an http client to modify information about an 
existing resource without changing the resource itself. 

Table A.1 Methods Available in HTTP Versions 

Method HTTP/0.9 HTTP/1.0 HTTP/1.1 

CONNECT   ● 

DELETE  ● ● 

GET ● ● ● 

HEAD  ● ● 

LINK  ●  

POST  ● ● 

PUT  ● ● 

OPTIONS   ● 

TRACE   ● 

UNLINK  ●  

Table a.2 summarizes the http headers available in each of 
the versions. Just to be complete, the table includes a column 
for http version 0.9, but, as we’ve noted, version 0.9 doesn’t 
actually use any headers. Three headers, Link, Title, and url, 
exist in version 1.0 but not 1.1. Those methods are mainly 
associated with the link and unlink methods. Like the 
methods themselves, they have not seen support by popular 
Web browsers and clients. 
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Table A.2 Headers Available in HTTP Versions 

Header HTTP/0.9 HTTP/1.0 HTTP/1.1 

Accept  ● ● 

Accept-Charset  ● ● 

Accept-Encoding  ● ● 

Accept-Language  ● ● 

Accept-Ranges   ● 

Age   ● 

Allow  ● ● 

Authorization  ● ● 

Cache-Control   ● 

Connection  ● ● 

Content-Encoding  ● ● 

Content-Language  ● ● 

Content-Length  ● ● 

Content-Location   ● 

Content-MD5   ● 

Content-Range   ● 

Content-Type  ● ● 

Date  ● ● 

ETag   ● 

Expect   ● 

Expires  ● ● 

From  ● ● 

Host   ● 

If-Match   ● 

If-Modified-Since  ● ● 

If-None-Match   ● 

If-Range   ● 

If-Unmodified-Since   ● 

continues… 
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Table A.2 Headers Available in HTTP Versions (continued) 

Header HTTP/0.9 HTTP/1.0 HTTP/1.1 

Last-Modified  ● ● 

Link  ●  

Location  ● ● 

Max-Forwards   ● 

MIME-version  ● ● 

Pragma  ● ● 

Proxy-Authenticate   ● 

Proxy-Authorization   ● 

Range   ● 

Referer  ● ● 

Retry-After  ● ● 

Server  ● ● 

TE   ● 

Title  ●  

Trailer   ● 

Transfer-Encoding   ● 

Upgrade   ● 

URL  ●  

User-Agent  ● ● 

Vary   ● 

Via   ● 

Warning   ● 

WWW-Authenticate  ● ● 

A.3 HTTP 1.1 Support 

One way to assess the level of http 1.1 support relies on re-
ports from implementers themselves. The World Wide Web 
Consortium allows developers to report the status of their 
implementations and to indicate which http 1.1 features 
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they support and which they do not. It appears that the re-
porting mechanism has been little used since 1998, but tables 
a.3, a.4, and a.5 summarize the results of those reports.  

Some caution is definitely in order when interpreting these 
results for at least four reasons. First, the information is not 
particularly recent, and it certainly does not represent the 
newest releases of popular http clients and servers. It is 
quite possible (even likely) that vendors have changed their 
support for http 1.1 since 1998. Second, the data set is rather 
small. It represents the reports of only 14 client implementa-
tions, 18 server implementations, and 8 proxy implementa-
tions; in all cases that’s far fewer than the number of 
implementations that exist today on the Web. Third, the in-
formation was reported by the implementers themselves and 
was not verified or audited by an outside party. Finally, in a 
lot of cases the total number of implementations supporting 
a feature may be much less important than knowing which 
ones support that feature. If, for example, a particular feature 
is available only in two Web browsers but those two repre-
sent 95 percent of the Web browser market, the lack of sup-
port by other implementations may not matter to some 
applications. 

 

Table A.3 Methods Supported by HTTP 1.1 Systems in 1998 

Method Clients Servers Proxies 

CONNECT 64% 39% 75% 

DELETE 50% 50% 38% 

GET 100% 100% 100% 

HEAD 93% 100% 100% 

OPTIONS 43% 56% 50% 

POST 93% 100% 100% 

PUT 64% 67% 50% 

TRACE 50% 67% 50% 
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Table A.4 Headers Supported by HTTP 1.1 Systems in 1998 

Header Clients Servers Proxies 

Accept 86% 83% 100% 

Accept-Charset 64% 67% 63% 

Accept-Encoding 71% 67% 63% 

Accept-Language 64% 72% 63% 

Accept-Ranges 57% 67% 50% 

Age 57% 39% 63% 

Allow 43% 83% 63% 

Authorization 86% 94% 88% 

Cache-Control 86% 94% 100% 

Connection 100% 94% 100% 

Content-Encoding 93% 89% 88% 

Content-Language 57% 72% 63% 

Content-Length 93% 94% 100% 

Content-Location 64% 56% 63% 

Content-MD5 29% 50% 38% 

Content-Range 64% 72% 63% 

Content-Type 86% 100% 100% 

Date 86% 100% 100% 

ETag 64% 78% 63% 

Expect 36% 50% 38% 

Expires 57% 78% 63% 

From 64% 44% 63% 

Host 100% 100% 100% 

If-Match 57% 72% 63% 

If-Modified-Since 86% 100% 100% 

If-None-Match 43% 67% 50% 

If-Range 43% 50% 38% 

If-Unmodified-Since 50% 78% 63% 

Last-Modified 64% 83% 63% 

Location 79% 78% 63% 
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Table A.4 continued 

Header Clients Servers Proxies 

Max-Forwards 43% 28% 63% 

Pragma 86% 83% 100% 

Proxy-Authenticate 93% 44% 88% 

Proxy-Authorization 93% 44% 88% 

Range 64% 67% 63% 

Referer 64% 61% 50% 

Retry-After 43% 39% 50% 

Server 57% 83% 63% 

TE 43% 22% 25% 

Trailer 36% 17% 25% 

Transfer-Encoding 86% 89% 88% 

Upgrade 29% 22% 38% 

User-Agent 93% 67% 100% 

Vary 43% 61% 63% 

Via 64% 44% 88% 

Warning 50% 28% 63% 

WWW-Authenticate 86% 94% 100% 

Basic Authentication 93% 94% 100% 

WWW-Authenticate Digest 14% 50% 13% 

qop-options auth 7% 17% 0% 

qop-options auth-int 7% 6% 0% 

Authorization Digest 14% 50% 13% 

request qop auth 7% 17% 0% 

request qop auth-int 7% 6% 0% 

Authentication-Info Digest 14% 28% 13% 

response qop auth 7% 17% 0% 

response qop auth-int 7% 6% 0% 

Proxy-Authenticate Basic 79% 39% 75% 

Proxy-Authenticate Digest 14% 11% 13% 

continues… 
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Table A.4 Headers Supported by HTTP 1.1 Systems (continued) 

Header Clients Servers Proxies 

Proxy qop-options auth 7% 0% 0% 

Proxy Authorization Digest 14% 11% 13% 

Proxy request qop auth 7% 0% 0% 

Proxy request qop auth-int 7% 0% 0% 

Proxy Authentication-Info Digest 14% 6% 13% 

Proxy response qop auth 7% 0% 0% 

Proxy response qop auth-int 7% 0% 0% 

 

Table A.5 Status Codes Support in HTTP 1.1 Systems in 1998 

Status Clients Servers Proxies 

100 Continue 71% 72% 63% 

101 Switching Protocols 29% 28% 38% 

200 OK 100% 100% 100% 

201 Created 50% 50% 38% 

202 Accepted 36% 33% 25% 

203 Non-Authoritative Information 29% 28% 25% 

204 No Content 64% 50% 50% 

205 Reset Content 29% 22% 25% 

206 Partial Content 57% 61% 50% 

300 Multiple Choices 43% 39% 38% 

301 Moved Permanently 93% 83% 88% 

302 Found 64% 72% 50% 

303 See Other 64% 39% 50% 

304 Not Modified 86% 94% 100% 

305 Use Proxy 57% 28% 50% 

307 Temporary Redirect 86% 44% 75% 

400 Bad Request 86% 94% 88% 

401 Unauthorized 100% 100% 100% 

402 Payment Required 64% 44% 88% 
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Table A.5 continued 

Status Clients Servers Proxies 

403 Forbidden 86% 94% 100% 

404 Not Found 86% 100% 100% 

405 Method Not Allowed 64% 72% 63% 

406 Not Acceptable 64% 50% 63% 

407 Proxy Authentication Required 93% 44% 88% 

408 Request Timeout 50% 39% 25% 

409 Conflict 50% 39% 38% 

410 Gone 43% 22% 25% 

411 Length Required 64% 50% 50% 

412 Precondition Failed 57% 61% 50% 

413 Request Entity Too Large 50% 33% 38% 

414 Request-URI Too Long 50% 28% 38% 

415 Unsupported Media Type 50% 33% 38% 

416 Requested Range Not Satisfiable 57% 44% 50% 

417 Expectation Failed 43% 39% 38% 

500 Internal Server Error 57% 78% 63% 

501 Not Implemented 57% 83% 63% 

502 Bad Gateway 43% 28% 38% 

503 Service Unavailable 64% 44% 63% 

504 Gateway Timeout 57% 44% 63% 

505 HTTP Version Not Supported 43% 56% 38% 
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APPENDIX B 

HTTP in Practice — 
Building Bullet-Proof Web Sites 
 

Although http—as a network protocol—is certainly an in-
teresting and critical topic, ultimately we use protocols to 
build systems and services. In the case of http, those sys-
tems and services are most commonly Web-based. In this 
appendix, we step back a little from the protocol itself and 
explore Web sites from an overall system perspective. Clearly, 
this approach is specific to a single http-based application; 
however, it provides important context for http as a proto-
col, as well as the many supporting protocols we’ve seen in 
previous chapters. Lessons learned in building Web site ar-
chitectures are valuable in other applications of http as well. 

The subject of this appendix is building bullet-proof Web 
sites. For our purposes “bullet-proof ” Web sites possess three 
critical attributes: They are secure, they are reliable, and they 
are scalable. Security protects Web sites and their users from 
malicious parties. It prevents malicious parties from disrupt-
ing the operation of a site or from accessing users’ confiden-
tial information. Reliability (which, in technical jargon, is 
more properly called availability, see the sidebar) protects 
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Web sites from failure, failure of a site’s own systems or of 
the infrastructure on which it relies. Scalability protects a site 
against success. A scalable Web site can gracefully accom-
modate a rapid and substantial growth in the number of its 
users. 

Not surprisingly, the qualities that make up a bullet-proof 
site are related to each other. In many cases the tools and 
techniques that address reliability also solve scalability prob-
lems, and in some cases an approach that improves scalability 
sacrifices security. This appendix, therefore, doesn’t consider 
each of the key bullet-proof qualities in isolation. Rather, 
we’ll look at a Web site from the outside-in, considering all 
of the tools and techniques together as we look deeper into 
the site’s architecture. We begin with something critical to 
any Web site: its connection to the Internet. Then we look at 
the systems and infrastructure that make up a Web site. The 
third section examines architectures that protect actual Web 
applications themselves. In the fourth section we discuss 
management and monitoring processes needed to keep a 
Web site up. Finally, the appendix concludes by putting all 
the elements together in a comprehensive, example site. 

B.1 The Internet Connection 

As tempting as it is to worry about application software, da-
tabase management systems, and operating systems, the most 
vulnerable part of any Internet-based architecture is its 
Internet connection. An Internet connection, after all, is a 
site’s very lifeline to the Web. That role makes the connec-
tion critical for reliability and scalability, and, as the entry 
point for malicious parties, it can be the focus of many secu-
rity attacks. 

B.1.1 Redundant Links 

One of the more challenging aspects of engineering a Web 
site’s Internet connection is protecting that connection from 

Reliability and Availability 

In the engineering of complex 

systems, the terms reliability and 

availability have precise meanings. 

A reliable system provides the 

correct response; an available 

system is always able to provide 

some response. Ultimately, of 

course, users want both reliability 

and availability. When a banking 

customer wants to check her 

balance online, she expects her 

bank’s Web site to be up and 

running (available), and she 

expects the balance it advertises 

to be accurate (reliable). Of the 

two qualities, however, Web site 

architecture can really influence 

only availability. For that reason, 

this appendix considers the 

requirements for highly available 

Web sites, even though, in 

common usage, that quality is 

often called reliability. Availability 

is often expressed as a percentage 

of the time that a system can be 

accessed by its users. The standard 

for the U.S. telephone network is 

99.999 percent availability, which 

represents about 5 minutes of 

downtime in a year. Even the 

much less ambitious goal of 99.9 

percent availability barely permits 

one business day of downtime 

each year. 
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failure. In all approaches the key is redundancy—have the 
site support more than one Internet connection. It’s not 
normally sufficient, however, just to have two physical con-
nections; equally important is to ensure that the Internet 
connections are supplied by different Internet Service Pro-
viders. In many cases a connection failure is due to opera-
tional or systems problems at an isp,  and such problems can 
affect all of that isp’s connections. 

The most straightforward way to provide redundancy is to 
use mirrored Web sites. In other words, create two (or more) 
separate sites, each with its own connection to the Internet.  
Figure b.1 illustrates the configuration. 

With this approach, the contents of the different physical 
sites must be kept identical. Typically this is practical only 
for static Web sites. If users can dynamically change the state 
of the site (by, for example, updating their account informa-
tion), it is difficult to instantly reflect such changes in the 
backup site. 

In addition to creating primary and backup sites, mirroring 
requires special configuration of the site’s Domain Name 
System (dns) server. dns translates between human-readable 
host names and numerical ip addresses. For example, when 
users enter the Web address www.microsoft.com in their 
Web browser, dns servers may identify the true destination 
as 207.46.130.45.  

With mirroring, the dns server must provide ip addresses of 
both sites to client queries. Web browsers that fail to connect 
with the primary Web server can then automatically attempt 
a connection with the backup. Unfortunately, the switchover 
from primary to backup is completely under the control of 
the client, and typical client behavior may be counter to a 
site’s availability requirements. 

Clients generally decide on an ip address only when they 
attempt to initiate a connection to a Web site. Web browsers 
will not automatically switch to a backup ip address after a 

Provider Diversity 

Whether you’re designing your 

own Web site or relying on a Web 

hosting provider, making sure that 

your different Internet 

connections truly come from 

different ISPs can be surprisingly 

difficult. The telecommunications 

industry relies heavily on 

resellers—providers that resell the 

facilities of others. That means that 

the company from which you 

purchase one of your Internet 

connections may not be the same 

company that’s actually providing 

it. If you’re not careful you may 

end up paying two different ISPs 

that are, in fact, using the same 

infrastructure, which defeats one 

of the main reasons for using 

multiple ISPs in the first place. Also 

pay attention to the details of your 

Internet connections. The leased 

line connections to your building 

(frequently provisioned by the 

local telephone company) may 

rely on the same physical 

infrastructure even for multiple 

ISPs. This problem is not just 

theoretical; companies that were 

convinced they had multiple 

Internet connections have been 

surprised when an errant backhoe 

eliminated both connections at 

once because the phone company 

had used the same physical 

conduit to bring both leased lines 

into the building. 
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connection has been established. Once a page has begun 
downloading, the connection is established and switchover is 
not possible. (With http persistence, this statement is true 
even if the page contains multiple objects.) If the primary 
Web server fails during page downloads, users are forced to 
wait until the download times out, at which point they can 
click “Refresh” on their browsers to initiate a new connec-
tion. With common Web browsers, the timeout period is 
about one minute. Even this brief period is significant, as 
research suggests that consumers will wait no longer than 
about eight seconds before taking their business elsewhere. 

Global load balancing addresses some of those concerns by 
giving the site itself more control over the mirroring. As fig-
ures b.2 and b.3 show (and section 5.1 discusses) a global load 
balancing appliance acts as either a dns server or an http 
redirect server for the Web site. When the client requests the 
ip address for a Web site (figure b.2) or initiates an http 
session (figure b.3), the global load balancer determines 
which Web server offers the best performance to the client 
and directs the client to that server. The client then commu-
nicates directly with the designated Web site. 

To ensure that clients are not directed to Web servers that 
have failed, the global load balancer may continuously 
monitor the health of each server. When it detects a failure, 
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Figure B.1 �
Mirroring Web sites to multiple
servers, each connected to the

Internet through a different service
provider, significantly improves the

reliability of the overall Web site.
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it responds to all queries with ip addresses of only the 
surviving sites. 

The main benefit of global load balancing over simple dns-
based mirroring is responsiveness to problems. dns mainte-
nance is typically a manual process. Practically, that means 
it’s not possible for a simple dns-based approach to auto-
matically stop returning ip addresses of failed servers. 
(Changing the response of a dns server requires manual re-
configuration.) That’s why it is essential for dns servers to 
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� Figure B.2 
A global load balancer can use DNS 
responses to route clients to one Web 
server or another. The load balancer 
acts as the DNS server for the site. 

� Figure B.3 
HTTP redirection is another technique 
that allows global load balancers to 
route clients to different Web servers. 
In this example the load balancer acts 
as the site’s primary Web server, but, 
instead of serving the site’s content, it 
merely redirects clients to the real 
Web servers. 
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return all ip addresses.  The burden of detecting a failed site 
and switching to the backup is left to the client. Global load 
balancers, on the other hand, automate the selection of ap-
propriate dns responses. Their dns responses are based on 
up-to-the-minute assessments of the status of the primary 
and alternate Web sites. This control lets the global load bal-
ancer make the decision to switch to a backup server, a deci-
sion that the load balancer can make much more quickly 
than a Web browsing client. (Of course, global load balancers 
offer the additional benefits of greater performance and 
scalability.) 

Unfortunately, when used in the dns mode, global load bal-
ancers don’t provide much help after the dns query has been 
resolved. If a Web server fails after a client has been given its 
ip address, only the client can decide to retry using an alter-
nate ip address. In fact, even when a client might be expected 
to issue a new dns query (and thus receive the latest infor-
mation from a load balancer), the load balancer doesn’t have 
the opportunity. Intermediate dns servers and client systems 
often cache the results of dns queries, ostensibly to improve 
performance. (In theory, dns entries include a “Time To 
Live” value that should prevent such caching. In practice, 
however, many intermediate servers and clients ignore this 
value.) 

 As an alternative to the dns approach, most load balancers 
may operate by redirecting http requests rather than resolv-
ing dns queries. In this approach, the load balancer itself is 
established as the nominal Web server for the site. Instead of 
responding directly to http requests, though, it redirects the 
clients to one of the real Web servers. 

B.1.2 Multi-homing 

Despite their utility, simple mirroring and global load bal-
ancing both suffer from a significant limitation—the primary 
and backup Web sites must be identical. As long as the site’s 
content is relatively static, this restriction may be acceptable. 
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Dynamic, data-driven Web sites, however, cannot support 
multiple, isolated Web servers. If a user checks account status 
after making a Web purchase, the status should reflect the 
purchase, even if a failover occurs between the two com-
mands and they are sent to different physical Web servers. 

Network protection for dynamic Web sites requires multiple, 
physical connections to the same physical site, as figure b.4 
illustrates. Again, to protect against the failure of an entire 
provider, each network connection must be from a different 
isp. This factor makes the configuration considerably more 
complex than it may at first appear. 

The issue with redundant connections is ip addressing. 
Normally, when an isp provides Internet access to an enter-
prise, the isp assigns ip addresses for that enterprise’s sys-
tems. In this case, however, more than one isp provides 
access. What ip address should the Web server use? 

The simplest answer is to use ip addresses from both service 
providers. Nearly all Web server platforms (certainly includ-
ing unix and Windows) have the capability of assigning 
multiple ip addresses to a given network interface. In such a 
configuration, clients could reach such a system using either 
ip address. If the Domain Name System is configured to 
provide both ip addresses to any query, clients would auto-
matically fall back to the backup address if the primary were 
inaccessible. Of course, this approach suffers from the same 
responsiveness issues as dns mirroring. It’s up to Web brows-
ing clients to detect and respond to network failures, and 
clients can choose from the ip addresses only when they first 
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� Figure B.4 
With multi-homing, a Web 
server connects to the Internet 
through multiple service 
providers simultaneously. 
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try to establish a connection. If the ip address becomes inac-
cessible after the connection is established, then the clients 
have to wait for the connection to time out. 

Web sites with redundant network connections can improve 
their availability significantly if they acquire their own ip 
addresses instead of relying on addresses assigned by an 
Internet Service Provider. Enterprises with their own ip ad-
dresses are reachable through any isp connection and, should 
a primary connection fail, the Internet will automatically 
reroute traffic through a backup isp. This rerouting takes 
only a second or two, and it is not normally noticeable to 
users. 

Provider-independent ip addresses, combined with redun-
dant Internet connections, may seem like an ideal approach 
for high-availability Web site architectures. There are, how-
ever, drawbacks. In this case the most significant obstacle is 
complexity. Administering your own ip addresses, and mak-
ing sure that everyone else on the Internet can reach them, 
are not trivial tasks. In effect, you’re becoming your own 
Internet Service Provider. 

Operating such a configuration requires support for appro-
priate Internet routing protocols, in this case the Border 
Gateway Protocol (bgp). Major Internet service providers use 
bgp to tell each other how to route to various ip addresses. 
Because you’re acting as your own isp, you’ll need to operate 
your own bgp router or server. 

You will also need the cooperation of your ISPs, as they must 
configure their bgp systems to communicate with your sys-
tem. The entire process is not for the faint of heart, and it 
requires a lot of care and attention. A misconfigured or mal-
functioning bgp system can, in theory, bring down the entire 
Internet. (Fortunately, there are protection mechanisms built 
into the Internet; you probably don’t want to be the one to 
test those mechanisms, however.) It is essential, therefore, 

Getting IP Addresses 

To get IP addresses for your 

enterprise that are independent of 

any service provider, you have to 

follow much the same procedure 

as ISPs do themselves. That 

generally means contacting the 

appropriate authority and 

justifying your request. Today, IP 

addresses are the responsibility of 

the Internet Assigned Numbers 

Authority, or IANA (www.iana.org). 
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Building Bullet-Proof Web Sites 249 

 

that enterprises adopting this technique have sufficient ex-
pertise in Internet routing and network connectivity.  

B.1.3 Securing the Perimeter 

A Web site’s Internet connection is not just how legitimate 
users access the site; it’s also the point of entry for malicious 
parties. Protecting these entry points is imperative, and the 
tool for doing so is a firewall. Figure b.5 shows a simplified 
view. Of course, a truly bullet-proof site will use redundant 
firewalls (and redundant Web servers as well). 

As guardians at the gates of a Web site, firewalls have two 
main tasks. First, they ensure that Internet users can access 
only appropriate parts of the site. And second, they ensure 
that users access those parts only in appropriate ways. The 
two tasks may sound similar, but they actually differ in im-
portant ways. The first job, allowing access to only appropri-
ate parts, prevents malicious parties from accessing systems 
and services within your Web site. Those systems may in-
clude other physical systems (such as database servers) or 
non-Web-related services on your Web servers themselves 
(such as file sharing). The second task, preventing inappro-
priate access to appropriate parts of the Web site, protects 
against denial-of-service attacks. In a denial-of-service at-
tack, a malicious party doesn’t try to gain access to inappro-
priate information; instead, the party simply tries to tie up 
system resources so thoroughly that legitimate users cannot 
receive service. Sending a flood of regular http requests, for 
example, can bog down a Web server. Fortunately, most 
competent firewalls can recognize and thwart these types of 
attacks. 
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� Figure B.5 
A firewall guards the entrance to a 
Web site from the Internet. It sees all 
network traffic destined to systems 
within the Web site, and it can block 
messages that are not appropriate. 
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B.2 Systems and Infrastructure 

Once a Web site has ensured that its connection to the 
Internet is bullet-proof, attention turns to the systems and 
infrastructure within the site. Here too we find a standard set 
of tools and techniques that ensure a site’s reliability, scalabil-
ity, and security, all of which we’ll examine next. The site 
mirroring approach, described in the previous section, pro-
tects against system and infrastructure failures in addition to 
Internet connection failures. Local load balancing and server 
clusters also enhance reliability, and they can be even better 
tools for scalability. The common architecture for security 
within a Web site organizes the systems in multiple layers, 
with a demilitarized zone (dmz) to act as a buffer between 
the Internet and sensitive information. 

B.2.1 Reliability through Mirrored Web Sites 

Although we discussed mirrored Web sites (and global load 
balancing) in the context of protecting the Internet connec-
tion, the same techniques also protect against system failures 
within a site. If a primary Web server fails, even though its 
Internet connection remains active, clients can still detect the 
failure and switch to a mirrored site, as figure b.6 illustrates. 
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Figure B.6 �
Web site mirroring offers protection

against server failures, as all clients
can be rerouted to a backup system.

When, in this example, the Web
browser realizes that it cannot

communicate with the primary server,
it switches to the backup site.
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Of course, mirroring suffers from the very same limitations 
described earlier—the speed at which the architecture re-
sponds to failures is under the control of the client rather 
than the site itself. Also, mirrored architectures are effective 
only for relatively static sites. As long as the site does not use 
a lot of dynamic content, though, mirroring may still be an 
excellent approach for making the site reliable. 

The key to evaluating mirroring is to match the technology 
with the site’s availability requirements. As a rule of thumb, 
it may take as long as three minutes to detect a primary fail-
ure and recover by connecting to a backup site. (The actual 
time depends on many factors, including the specific browser 
software, the user’s attentiveness, and the download time for 
the page.) Figure b.7 graphs the effect of three-minute fail-
ures on overall availability. If, for example, a site requires 99.9 
percent availability, it can tolerate as many as 14 failures each 
month. This level of reliability is easily attainable with cur-
rent Web servers. Higher availability requirements, however, 
may be difficult to satisfy solely with site mirroring. 

B.2.2 Local Load Balancing and Clustering 

Not all Web sites can tolerate the three-minute recovery pe-
riod that mirroring imposes. Either the cumulative effect of 
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� Figure B.7 
Relying on the browser to recover 
from a site failure can take as long as 
three minutes. A site’s availability 
requirements determine the number 
of such failures it can tolerate. 
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multiple three-minute outages may exceed the site’s 
availability requirements, or the consequences of a sustained 
three-minute outage may be too severe. For those situations, 
local load balancing and clustering offer much quicker recov-
ery times. 

Local load balancing and clustering can also significantly 
enhance the scalability of Web sites. Load balancing, in par-
ticular, lets site administrators instantly and transparently 
increase their site’s capacity. 

Local load balancing resembles global load balancing, in that 
a network appliance receives requests from clients and dis-
tributes them among multiple Web servers. With local load 
balancing, however, all systems (appliances and Web servers) 
share a common local network. Figure b.8 shows a typical 
configuration. 

As with global load balancing, the real benefit of local load 
balancing is in site scalability and performance; however, by 
monitoring Web server health and instantly switching away 
from failed systems, local load balancers offer subsecond re-
covery from failures. Generally, users are not even aware that 
a switchover has taken place. 
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Figure B.8 �
Local load balancing is generally

confined to one physical location, but
it allows for quick recovery from failed
systems in a way that is often invisible

to browser clients. As this example
shows, sites with high availability

requirements usually deploy
components such as load balancers in

redundant pairs. If one load balancer
fails, the other takes over.
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Another difference between local and global load balancers is 
their normal method of operation. Most local load balancers 
can respond to dns requests and perform http redirection. 
For maximum responsiveness, however, local load balancers 
interpose themselves directly between the Internet and the 
Web servers. As http traffic flows through a load balancer, 
the balancer distributes that traffic to appropriate servers, as 
figure b.9 illustrates. 

As the figures indicate, high availability architectures deploy 
local load balancers in pairs, with one serving as a backup to 
the other. This configuration is essential in preventing the 
load balancer itself from becoming a single point of failure. 
Evaluate load balancers not just on how fast they detect and 
recover from a Web server failure, but also on how fast they 
recover from the failure of one physical balancer. High-
quality load balancers can recover quickly enough that users 
do not notice. 

Server clusters are an alternative to local load balancing. 
Clustering combines many physical systems into a single, 
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� Figure B.9 
Local load balancers distribute 
requests among multiple Web servers. 
They can automatically detect faults 
and route requests around failed 
systems. Local load balancers act 
transparently to Web clients, so they 
can switch a client to a new server 
almost immediately, well before the 
client even notices a problem. 
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logical system, as figure b.10 illustrates. Should one physical 
server fail, the cluster continues to operate with the remain-
ing systems. 

For static Web sites, server clusters are generally not as desir-
able as local load balancing. Clusters are much more complex 
to administer and maintain, and they are usually more ex-
pensive to deploy. For full effectiveness, clustering also re-
quires special support from applications, in this case the Web 
server software. On the other hand, clusters can play an im-
portant role in protecting dynamic Web applications, as the 
next section discusses. 

B.2.3 Multi-Layer Security Architectures 

The previous section introduces firewalls as the primary 
technology for securing the perimeter of a Web site. 
Firewalls are also important for providing security within a 
site. Figure b.11 shows a typical security architecture for 
bullet-proof Web sites. As the figure shows, firewalls create a 
multi-layer architecture by bracketing the site’s Web servers. 
Exterior firewalls separate the Web servers from the Internet 
outside the site; interior firewalls separate the Web server 
from database servers deeper within the site. 

By creating multiple layers, this architecture adds more secu-
rity to the core information that a Web site manages—
information in the site’s database. The figure highlights the 
rules that each firewall contains. As long as the site is a pub-
lic Web site, the exterior firewall must allow anyone access to 
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Figure B.10 �
Clustering bonds multiple physical

systems together to act as one
logical system. In most

implementations the logical system
can automatically recover from the

failure of a physical system.
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the Web servers. Instead of limiting who can access the site’s 
systems, the exterior firewall’s main job is to limit which sys-
tems can be accessed. In particular, the exterior firewall al-
lows outside parties to communicate only with the Web 
servers; it must prevent outside parties from accessing any 
other system within the site. The interior firewall, on the 
other hand, focuses its protection on who can access the da-
tabase servers, not what systems can be accessed. Specifically, 
the interior firewall makes sure that the Web server is the 
only system that can access the database server. 

This architecture adds an extra layer of protection for the 
site’s critical data. An attacker can compromise either of the 
two firewalls and still not gain access to the protected infor-
mation. A successful attack requires breaching both firewall 
systems. 

B.3 Applications 

So far we’ve looked at bullet-proofing the infrastructure of a 
Web site architecture by protecting both its network connec-
tivity and its systems and servers. In this section we turn our 
focus to the Web application itself. Bullet-proofing Web ap-
plications is actually more complex than it may appear, pri-
marily because of the characteristics of the http protocol. 
The first subsection explores those characteristics and their 
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� Figure B.11 
Web sites often employ a multi-tier 
firewall configuration, dividing the 
site into a public (the Internet), a 
private (protected databases), and a 
“demilitarized” zone in between. 
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effect on the dynamics of Web applications. Then we’ll see 
how servers can overcome those limitations through applica-
tion servers, a new type of product designed primarily for 
Web applications. The third subsection discusses another 
important component of Web applications—database man-
agement systems. The section concludes with a discussion of 
application security. 

B.3.1 Web Application Dynamics 

The fact that we’re even discussing dynamic Web applica-
tions is a testament to the flexibility of the Web’s architecture 
and the ingenuity of Web developers. The World Wide Web, 
after all, was originally conceived as a way of organizing rela-
tively static information. In 1989, it would have been hard to 
imagine how dynamic and interactive the Web would be-
come. In fact, the communication protocols and information 
architecture of the Web don’t support dynamic applications 
naturally and easily. 

The fundamental challenge for dynamic Web applications is 
overcoming the stateless nature of the Hypertext Transfer 
Protocol. As we’ve seen, http is a simple request-and-
response protocol. Clients send a request (such as a url) and 
receive a response (a Web page). Basic http has no mecha-
nism that ties one request to another. So, when a Web server 
receives a request for the url corresponding to “account 
status,” http can’t tell the server which user is making the 
request. That’s because the user identified herself by logging 
in using a different url request. 

A critical part of dynamic Web development is overcoming 
the stateless nature of http and tracking a coherent user 
session across many requests and responses. Protecting this 
session information is also the key to providing high-
availability Web applications. Systems and networks may fail, 
but, as long as the session state is preserved, the application 
can recover. 

Tracking Sessions 
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There are two different levels of protection for Web session 
information: persistence and sharing. With persistence, ses-
sion information is preserved on disk rather than in memory. 
If a Web server fails, it can recover the session information 
when it restarts. Of course, this recovery is effective only if 
the server is capable of restarting. Also, the site is not avail-
able during the restart period. 

A more thorough method of protecting state information is 
sharing it among multiple systems.  If one system fails, a 
backup system can immediately take over. This recovery pro-
tects the session while the failed system restarts, and it can 
preserve the session even if the failed system cannot be re-
started. 

B.3.2 Application Servers 

The difficulty of tracking session state (much less protecting 
it from failure) is one of the significant factors that has led to 
the creation of a new type of product: application servers. 
Although each vendor has its own unique definition, 
application servers exist to run Web-based services that 
require coordination of many computer systems. (The term 
“application,” in this sense, refers to a particular business ser-
vice, not a single-purpose software program such as an Excel 
or Photoshop.) Figure b.12 highlights the application server’s 
role as the central coordinator for a business. 

Even though application servers were not designed specifi-
cally to make Web applications highly available, their central 
role in a business architecture makes availability and reliabil-
ity critical. As a consequence, some application server prod-
ucts have extensive support for high-availability applications. 
Even if a particular Web site architecture does not require 
the coordination of disparate systems like application server 
products advertise, the Web site may still take advantage of 
application server technology just to improve its availability. 
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Application servers tend to support high availability using 
either of two general approaches. The first approach deploys 
the application server software on server clusters. We first 
discussed server clusters in the context of Web servers, but, 
as we noted then, software that runs on server clusters must 
be specifically designed to take advantage of clusters. In gen-
eral, Web server software is not designed in that way; how-
ever, some key application servers are. With this 
configuration, illustrated by figure b.13, the application server 
software appears as a single entity to the Web servers it sup-
ports. The clustering technology handles failover using its 
normal recovery mechanisms. 

Some application servers choose to support high availability 
with their own mechanisms rather than relying on server 
clusters. This approach gives the application server more 
control over failover and recovery, and it keeps the software 
from becoming dependent on a particular operating system’s 
cluster support. Because most application servers can run on 
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Figure B.12 �
Application servers can become the

focal point of a dynamic Web site,
coordinating among Web servers,

databases, and legacy systems. As the
master coordinator of a site’s

responses, application servers can
naturally assume some responsibility

for site availability.
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multiple operating systems, this independence may be an 
important factor in their approach to high availability. 

Although the specifics vary by vendor, using an application 
server’s own fault tolerance generally results in a configura-
tion similar to figure b.14. One factor that the figure high-
lights is the need to distribute the Web servers’ requests 
among multiple application servers, and to automatically 
switch those requests away from any failed systems. The ex-
act mechanism that’s most appropriate here depends on the 

Web Server Web Server

Application
Server

Application
Server

Application
Server

Dispatch
Requests

 

Web Server Web Server

Cluster
ConnectionServer Server

Application Server  

� Figure B.14 
Other application servers have their 
own mechanisms for redundancy and 
availability. Application servers that 
take on this responsibility must 
coordinate among themselves so that 
one server can cover for another. 

� Figure B.13 
Some application servers run on 
clustered systems, taking advantage 
of the cluster’s fault tolerance and 
recovery services. In such 
configurations, the application server 
software doesn’t have to worry about 
failure and recovery itself. 
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particular method the Web servers use to communicate with 
application servers. Three different approaches are common, 
as table b.1 indicates. 

Table B.1 Supporting Multiple Application Servers 

Dispatch Method Use 

Local Load Balancers If the protocol for Web server to application 

server communication is HTTP, standard local 

load balancers can distribute requests appro-

priately. 

Ethernet Switches Ethernet switches with layer 4 (or layer 7) 

switching capabilities can usually distribute 

multiple protocols, not just HTTP. 

Multi-Use Systems The simplest approach may be to run both Web 

server and application server software on the 

same physical systems. The site’s protection 

mechanism for Web server failures also pro-

tects against application server failures. 

When evaluating application servers for high-availability 
Web sites, it is important to look closely at the server’s ses-
sion-level failover support. Automating failover for individ-
ual sessions is a technical challenge, and some application 
servers that advertise “high availability” support automated 
failover by forcing users to restart entirely new sessions. This 
behavior may be acceptable for some sites, but others may 
require truly transparent failover. 

B.3.3 Database Management Systems 

One technology that is common to nearly all dynamic Web 
sites is a Database Management System (dbms). Ultimately, 
the information that drives the Web site—user accounts, 
orders, inventory, and so on—must reside somewhere, and 
the vast majority of sites choose to store it in some form of 
database. If the Web site is to remain highly available, the 
database management system must be highly available as 
well. In this subsection we’ll take a brief tour of some of the 



Building Bullet-Proof Web Sites 261 

 

approaches that protect databases from failures. Two of the 
approaches rely on hardware or operating system software, 
while three are strictly features of the dbms applications 
themselves. 

The hardware clustering technology we’ve already discussed 
is a common technique for protecting database systems. As 
we’ve seen before, hardware clustering does require that the 
application software include special features to take advan-
tage of its failover technology. In the case of database man-
agement systems, however, that support is widespread and 
quite mature. 

One technology that is completely independent of the data-
base application is remote disk mirroring. Remote disk mir-
roring uses special hardware and ultra-fast network 
connections (typically via fiber optic links) to keep disk ar-
rays at different locations synchronized with each other. This 
technology, which is common in the telecommunications 
and financial services industries, is not really optimized for 
high availability. It is, instead, intended mainly to protect the 
information in a database from catastrophic site failures (a 
fire, for example). Still, if there is an effective recovery plan 
that brings the backup disks online quickly enough, remote 
disk mirrors can be an effective component of a high-
availability architecture. 

In addition to these two techniques that are primarily out-
side the scope of the dbms itself, most database systems sup-
port high-availability operation strictly within the dbms. The 
approaches generally fall into one of three techniques: paral-
lel servers, replication, or standby databases.  

The highest performing option is parallel servers, which es-
sentially duplicate the functionality of a hardware cluster 
using only dbms software.  Figure b.15 shows a typical con-
figuration. Multiple physical servers act as a single database 
server. When one server fails, the remaining servers auto-
matically pick up and recover the operation. Recovery is gen-

DBMS Vendor Specifics 
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technology, we’ve tried to present 
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database management systems. 
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between the products, but, to cite 
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erally transparent to the database clients such as Web servers 
or application servers, which continue unaware that a failover 
has occurred. 

Another approach for protecting database systems is replica-
tion. Replication uses two (or more) separate database serv-
ers, along with database technology that keeps the two 
servers synchronized. Replication differs from parallel servers 
because it does not present the separate servers as a single 
logical database. Instead, clients explicitly connect with one 
or the other database, as figure b.16 indicates. (Some data-
base systems require that all clients connect with the same 
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Figure B.16 �
Database replication keeps multiple

copies of a database synchronized
with each other. If one database

system fails, clients can continue
accessing the other system.

Figure B.15 �
Parallel database configurations are

essentially clusters that have been
optimized for database applications.

As with traditional clustering
technology, the entire system

automatically recovers if one of its
components fails.
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server, but more advanced implementations can support in-
teraction with the replicated servers as well.) 

When a database server fails, the database clients must rec-
ognize the failure and reconnect to an alternate database. 
Although this is not as transparent nor as quick as a parallel 
server implementation, most database vendors have technol-
ogy to speed up the detection and reconnection considerably, 
and it can generally (but not always) proceed transparently to 
the database user. 

The third database technology that can improve availability 
is standby databases. With standby databases, all clients 
communicate with a primary database server. As figure b.17 
shows, that server keeps an alternate server informed of the 
changes. The alternate server, however, is not usually syn-
chronized with the primary server in real time. Instead, there 
is a time delay that can range from a few seconds to several 
minutes and even longer. Should the primary server fail, the 
alternate must be quickly brought up to date and all database 
clients redirected to the alternate server. In this case, recovery 
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� Figure B.17 
Standby logs allow a database to keep 
a record of all operations it performs. 
This log can help recreate the state of 
the database should the main system 
fail. Such recovery, however, is rarely 
fully automatic, so it may take much 
longer than other methods. 
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is not normally transparent to the users, and during the re-
covery process the Web site will be unavailable. 

Although the time lag between changes to the primary and 
alternate databases may seem like a disadvantage, in some 
situations it may also be a significant advantage. If, for ex-
ample, an application executes a database query that corrupts 
the database, a vigilant database analyst may intercept the 
standby logs and delete the query before it executes on the 
alternate database, thus preserving the data in the alternate 
database. Any delays that the Web site introduces for this 
purpose, however, should occur after the standby log is 
moved to the alternate server. That provides the greatest pro-
tection from catastrophic site failures. 

Although we’ve discussed each of these techniques in general 
terms, it’s important to recognize that different dbms ven-
dors implement each approach differently. Choosing be-
tween the approaches, however, is generally a trade-off 
between responsiveness and cost. As the chart in figure b.18 
highlights, approaches that support rapid recovery are expen-
sive. They require a lot of communications traffic between 
the physical components to keep them tightly synchronized. 
This synchronization, in addition to requiring network 
bandwidth, also slows the response of the server to normal 
requests. Rapid recovery approaches are also more complex 
and require the greatest skill to deploy and maintain. On the 
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Figure B.18 �
Database reliability technologies are

inevitably a trade-off between cost
and recovery speed. The faster the

recovery, the more expensive the
technology and its implementation.
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other hand, approaches that minimize the complexity and 
cost are not able to recover from failure as quickly. 

B.3.4 Application Security 

If the Web site interacts dynamically with its users, it may 
wish to provide security for that interaction. Security may be 
useful even if the interaction is nothing more than allowing 
users to personalize or customize the pages; it certainly is 
important if the site manages the users’ financial information 
(e.g., an online bank) or conducts electronic commerce. The 
first goal of application security is to verify the identity of the 
end user. A second, optional goal is to ensure the privacy of 
the information exchanged. 

As we’ve seen in chapter 4, http has several mechanisms to 
authenticate end users. As we also saw, however, many of 
http’s mechanisms have easily exploited weaknesses. For 
this reason, Web sites should be extremely careful in their use 
of http authentication, making sure that the weaker, default 
modes are not employed. This caution applies even if the site 
is using authentication to protect information with relatively 
little value. Human nature makes it hard to resist the temp-
tation to reuse passwords on multiple Web sites. And, al-
though a portal site may not think that its content justifies 
strong authentication, if the portal site allows attackers to 
intercept its users’ passwords, its users may be extremely un-
happy when their intercepted passwords are used to access 
online brokerage accounts. 

B.3.5 Platform Security 

Security-conscious Web sites worry about the security of 
their platforms as much as the security of their applications. 
Today, nearly all Web sites rely either on Windows or Unix 
as an underlying operating system for their servers, and 
neither has been shown to be perfect in protecting against 
network attacks. Other commercial software, including Web 
servers and application servers, suffers a similar fate. 
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Fortunately, the network security community is effective 
both at discovering vulnerabilities and reporting them to the 
responsible vendors. The vendors are usually well motivated 
to respond rapidly with patches and fixes. The main 
weakness in this process is its reliance on site administrators 
to proactively monitor their vendors for updates and apply 
those updates as they become available. It can be difficult for 
administrators, under the gun for a myriad of other issues, to 
find the time required to keep all products up to date. Bullet-
proof security, however, demands nothing less. Keep in mind 
that as soon as a patch or fix is made publicly available, the 
vulnerability the upgrade addresses is also publicly available. 
And although it may take extremely clever engineers to 
discover a vulnerability, exploiting a known vulnerability, 
once it has been made public, can be trivial. Administrators 
that do not keep their software completely up to date at all 
times run a high risk of a security breach of their sites. 

B.4 Staying Vigilant 

So far in this appendix, we’ve looked at what it takes to de-
sign and deploy bullet-proof Web sites. Design and deploy-
ment are just the beginning, however. It is equally important 
to make sure that a site stays available. That calls for network 
management, monitoring, and intrusion detection, as well as 
strict procedures for site maintenance and upgrades. This 
section considers those issues. 

B.4.1 External Site Monitoring 

One of the most basic steps you can take to ensure that a 
Web site remains available is to measure its availability. And 
there is no better way to measure availability than to act as 
users. Web site monitoring services exist just to make those 
measurements. 

Web site monitoring services generally rely on a network of 
probes deployed across the Internet. As figure b.19 shows, 
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these probes periodically access a Web site by emulating ac-
tual users. The service collects the results from these access 
attempts and presents them to an administrator, usually via a 
secure Web site. Some services also provide immediate noti-
fication of site failures via email, pager, or telephone. 

When evaluating site monitoring services, there are several 
factors to consider. First, be sure the service’s primary focus 
fits your requirements. Nearly all services provide informa-
tion on performance (such as download times) as well as 
availability. If that’s important to you, look at those services 
with a performance focus. If, on the other hand, availability 
is your top concern, be careful not to pay for performance 
measurements that you don’t need. 

Another factor is the depth the service provides. Some ser-
vices simply perform quick checks of static urls. Others are 
much more sophisticated and can even carry out a complete 
ecommerce transaction. Monitoring services can also check 
other applications, such as email and file transfer servers. 
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Site Probe
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� Figure B.19 
Web site monitoring relies on a 
network of probes to periodically 
emulate users and simulate 
transactions with the site. The probes 
can measure the site’s responsiveness 
and detect site failures. 
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The number and location of the monitoring probes are also 
important. If your Web site serves a significant international 
audience, you may want to focus on services that have probes 
throughout the world, rather than strictly in the United 
States. Whatever your users’ profile, an ideal monitoring ser-
vice will have a probe configuration that matches that profile 
as closely as possible. 

Also, check out the frequency of the probes’ measurements. 
Some services check your site only once an hour, or even 
once a day. If high availability is critical, such infrequent 
checks may not be sufficient. 

As a additional note, there is little reason (other than cost) to 
limit yourself to a single monitoring service. The perfect 
monitoring service for your Web site may, in fact, be a com-
bination of two or more services. 

Finally, if your Web site is particularly specialized or, per-
haps, is not intended for a general Web audience, an alterna-
tive to monitoring services is deploying your own monitoring 
software. The same issues that are important for a monitor-
ing service—level of monitoring, location of probes, and so 
on—are important with this approach as well. Deploying 
your own monitoring application, however, gives you com-
plete control over the implementation decisions. 

B.4.2 Internal Network Management 

Web site monitoring services provide an important measure 
of a Web site’s health, but by themselves, they won’t give you 
a complete picture of your site. That’s because external 
probes can measure your site only as if they were users; they 
can’t tell you what’s going on behind the scenes. That visibil-
ity requires a network and systems management application. 

To understand the importance of internal network manage-
ment, consider what happens when one of the systems in a 
two-node hardware cluster fails. If the cluster is operating 
correctly, then the other system will take over. The failover 
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should be transparent to users—and to any external monitor-
ing service. Your Web site, however, is now at risk. It has just 
become vulnerable to a single point of failure. If the remain-
ing cluster node also fails, the site goes down. Obviously, in 
such a situation you need to know about the failed cluster 
node quickly so that it can be repaired or replaced. It’s the 
job of an internal network management system to alert you 
to the problem. 

The common denominator for most network management 
applications is the Simple Network Management Protocol 
(snmp). As figure b.20 shows, management applications use 
snmp to query the status of network devices, including serv-
ers, switches, hubs, routers, and firewalls. Even some unin-
terruptible power supplies support snmp. An effective 
management application collects snmp-based information 
and presents a coherent, overall view of a network’s health to 
its users. 

Internet

Network
Management

System  

� Figure B.20 
A network management system 
monitors the health of all network 
devices that make up a Web site. 
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The more sophisticated network management applications 
do much more than simply query device status. They can 
correlate the status of several devices and even diagnose the 
root cause of network problems. Sophisticated management 
frameworks also integrate with other applications such as 
customer support, trouble ticketing, and inventory control. 
The larger the overall enterprise (and the more sophisticated 
its information technology infrastructure), the more likely it 
will find the capabilities of sophisticated management appli-
cations appealing. 

Unfortunately, although snmp support is common in net-
work devices and appliances, it is less popular in high-level 
software. Database management systems, application servers, 
and Web server software, for example, may not provide a way 
for snmp-based management software to query their status. 
Quality products in all of those categories will provide some 
method of management; however, that method may not be 
snmp. Management via Web browsers, for example, is a 
popular alternative. Unfortunately, it’s also usually proprie-
tary and, consequently, does not permit an integrated, unified 
view of the entire Web site. 

The bottom line, as always, is to understand your own needs. 
If interoperability with a network management framework is 
critical to your site, be sure the commercial software that you 
deploy in your site supports snmp management. If, on the 
other hand, unified network management is less important, 
multiple management views may be acceptable. 

B.4.3 Intrusion Detection 

In the same way that bullet-proof Web sites need network 
management systems to monitor the status of network sys-
tems, such Web sites must also monitor their security. Secu-
rity monitoring is the task of intrusion detection systems. An 
intrusion detection system, or ids, continuously looks for 
unauthorized access, network attacks, and other types of ma-
licious actions. When it detects suspicious activity, the ids 
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can alert administrators and, in some cases, actively defend 
against the attack. 

There are two different types of intrusion detection: host-
based and network-based. Some commercial products com-
bine both approaches, but most systems generally adopt one 
strategy over the other. Host-based systems add special soft-
ware agents to the systems being protected—Web servers, 
dns servers, application servers, database management sys-
tems, etc. These agents carefully monitor various compo-
nents of the local system, including, for example, the 
Windows event log, the unix /etc/passwd file, and other 
components critical to system security. If the agent detects 
suspicious activity, it reports its suspicions to a central man-
agement station. As figure b.21 shows, the management sta-
tion correlates reports from all the ids agents and presents a 
comprehensive view to the network administrator. The man-
agement station can also take action to alert the administra-
tor should the activity warrant it. 
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� Figure B.21 
Intrusion detection systems may 
use special software agents 
installed on host systems to watch 
the activity on those systems and 
report anything suspicious. 
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Network-based intrusion detection relies on a similar archi-
tecture; distributed monitoring systems report to a central-
ized management station. Instead of software agents 
monitoring events, however, a network-based ids relies on 
special-purpose network hardware. These hardware devices, 
illustrated in figure b.22, are placed on the network where 
they can monitor all network traffic. 

The two approaches, as you might expect, have their own 
strengths and weaknesses. Host-based agents have a much 
more comprehensive view of an intruder’s actions, but they 
themselves may be vulnerable to attack. If an attacker can 
successfully gain access to a host system, that attacker may be 
able to disable or defeat the monitoring agent. Network-
based agents are generally impervious to attacks themselves, 
but they can only infer what is happening on a host system 
because they have access only to the network traffic going to 
or coming from the system. Clever attackers may disguise 
their actions so as to slip by a network-based monitor, while 
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Figure B.22 �
Intrusion detection systems may also

rely on special network probes to
watch for suspicious activity. The

probes monitor network traffic
directly, independently of the site’s

host systems.
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a host-based monitor, even if it cannot discern the actions, 
may be able to see the effects. 

Both host-based and network-based intrusion detection sys-
tems usually employ one of two strategies to detect malicious 
behavior. The first strategy is often called profiling. With 
profiling, the ids passively monitors the network for a short 
period of time to learn. Passive monitoring teaches the ids 
the normal activities that take place on the network. The ids 
then becomes active, and, in this stage, simply looks for ac-
tivity that is markedly different from normal. The second 
intrusion detection strategy relies on signatures. An ids using 
signatures has a predefined set of activities that represent 
attacks, and the ids continuously looks for those activities. 
Neither profiling nor signatures are perfect, and both ap-
proaches often generate a significant number of false posi-
tives, indications of a problem when, in fact, none exists. A 
department reorganization, for example, may change the 
profile of network traffic significantly enough to trigger a 
profiling ids. And otherwise harmless activities such as di-
agnosing a network failure may trigger a signature-based ids. 
Nevertheless, as long as the frequency of false alerts is not 
great enough to cause the administrator to ignore the system, 
intrusion detection is a valuable tool in protecting the secu-
rity of Web sites. 

B.4.4 Maintenance and Upgrade Procedures 

A reality of the Web is that things change. Rapidly. Just as 
you put the finishing touches on an optimum high-
availability site architecture, the site will require revisions, 
maintenance, or upgrades. Unfortunately, it is during such 
changes that Web sites are most vulnerable. Carefully man-
aging changes to an operating Web site is critical to keeping 
the site up. 

Fortunately, some of the same technology that enhances a 
site’s availability also permits non-disruptive maintenance 
and upgrades. Most hardware clustering products, for 
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example, allow administrators to transparently take one of 
the physical systems offline, upgrade it, and then bring it 
back into the cluster, all without disturbing the operation of 
the rest of the cluster. 

The most critical factor for site maintenance, however, is not 
technology. Rather, it is people and processes. Web sites that 
expect to achieve high availability must have strong processes 
and thoroughly documented procedures that govern all as-
pects of site operation. Some key areas include the following: 

• Change and Configuration Management. High-availability 
sites must keep track of all details of their configuration 
and operation, including software releases, hardware 
components, and network connectivity. All changes 
made to the site—in any area—should be immediately 
reversible should problems arise. 

• Testing and Staging. Before any change is applied to a 
live production site, it should be tested on a staging site 
that mimics the production site as closely as possible. 
Surprises are inevitable, and much better received when 
they don’t affect real users. Because an ideal staging site 
completely duplicates the production architecture, it may 
be expensive to deploy. Staging sites often serve a dual 
purpose, therefore, acting also as a complete standby site 
for the production environment. 

• Tracking and Logging. When it comes time to actually 
implement a change or upgrade, it is important to log 
every action involved in the change, no matter how triv-
ial. If a problem occurs, an unambiguous record is in-
valuable in restoring the site to operation. 

B.5 The Big Picture 

In this appendix we’ve looked at many of the elements that 
make up bullet-proof Web sites. We’ve seen how to protect 
the site’s Internet connection, its servers, database systems, 
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and applications. We’ve also looked at essential tools for op-
erating and maintaining the site, and we’ve considered the 
importance of strict procedures for site upgrades. Now it’s 
time to put all these elements together. 

Figure b.23 illustrates one possible architecture for a high-
availability, scaleable, and secure Web site. The figure com-
bines many of the elements discussed in this appendix, and it 
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Bullet-proof Web sites combine many 
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introduces a few additional details. Although no vendors are 
named, the architecture contains only systems that are com-
mercially available today. This architecture is not just theo-
retical; it can be used to create real Web sites today. 

Of course, the architecture in the figure is only one of many 
possibilities, as we’ve tried to show throughout this article. 
Every Web site has unique requirements, and it is up to the 
site architect to match those requirements with an appropri-
ate implementation. 

B.5.1 Internet Connection 

The example Web site is interactive and dynamic, and its 
data must be kept consistent. Multiple Internet connections 
to dispersed sites, therefore, are not feasible. Keeping such 
sites synchronized would require prohibitively expensive 
interconnections between them, and it would degrade 
performance unacceptably. To protect against Internet 
connection failures, therefore, the site includes links to 
multiple Internet service providers. The site also maintains 
its own provider-independent ip addresses, and the site’s 
routers use bgp to advertise those addresses to the rest of the 
Internet. 

B.5.2 Web Systems 

To protect the site’s Web systems, the architecture uses local 
balancers (in a redundant configuration) to distribute traffic 
between two separate systems. As the figure illustrates, these 
load balancers also serve as screening firewalls. 

B.5.3 Applications 

The site takes advantage of Web application servers to actu-
ally run the site. These application servers run on the same 
physical systems as the Web servers, and they use proprietary 
technology to provide session-level failover. 
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B.5.4 Database Management System 

The site’s database management system runs on a hardware 
cluster and is supported by a Redundant Array of Inexpen-
sive Disks (raid) system. By relying on hardware clusters 
rather than database software, the site lets other software in 
addition to the dbms take advantage of the cluster’s high-
availability features. 

Notice also that the dbms and the application servers are 
separated by a second set of redundant firewalls. The two 
sets of firewalls define the demilitarized zone (dmz) com-
mon in Web site architectures. 

The site also uses standby logs to back up the database to a 
second site. The backup database protects the site’s data, but 
because the backup site does not include a full Web system, 
the standby process does not add significantly to the site’s 
availability. 

B.5.5 Network Management and Monitoring 

The site uses a combination of external monitoring and in-
ternal network management to ensure that it continues to 
operate. A Web site monitoring service provides the external 
monitoring, while the site uses its own network management 
system, based primarily on snmp, for internal management. 

B.5.6 Intrusion Detection System 

In addition to a traditional network management applica-
tion, the site operates an intrusion detection system. The ids 
system combines host-based monitoring agents and net-
work-based probes, all reporting to a central ids manage-
ment station. 
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Accept An http request header by which a client indicates the type of content 
it can accept. 

Accept-Charset An http request header by which a client indicates the char-
acter sets that it can accept. 

Accept-Encoding An http request header by which a client indicates the 
character encodings that it can accept. 

Accept-Language An http request header by which a client indicates the 
languages that it can accept. 

Accept-Ranges An http response header by which a server indicates that it 
can accept future requests for partial ranges of the object. 

ACK A tcp flag that the sender uses to acknowledge a previous tcp segment. 

Address A value that uniquely identifies a system on a network. An ip address 
uniquely identifies a system on the Internet. 

Age An http response header by which a server estimates the age, in seconds, 
of the object. 

Algorithm A parameter in the http Authorization and www-Authenticate 
headers by which the sender indicates a particular digest algorithm. 

Allow An http entity header that indicates the particular http methods that 
the object supports. 
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Application A communications service that relies on underlying communica-
tions protocols; Web browsing using http is an application. 

Application Server A special system that coordinates Web access to a variety 
of other systems, including database management systems and main-
frame services. Application servers can play a key role in the reliability of 
Web site architectures. 

Asymmetric Cryptography A type of cryptography which uses two different 
keys—one to encrypt messages and another to decrypt messages. The 
keys are constructed so that knowledge of the encryption key does not 
reveal the decryption key. Asymmetric cryptography is also called public 
key cryptography because the encryption key can be made public without 
compromising the security of the system. 

Authentication A security function which verifies the identity of a communi-
cating party. 

Authentication-Info An http response header by which the server provides 
additional information about an authentication exchange. 

Authorization An http request header by which a client authenticates its 
identity. 

Availability The degree to which a system such as a Web site can be accessed 
by its users. 

Bandwidth A measurement of network capacity. 

Base64 An encoding method that expresses arbitrary binary data strictly in 
characters from the ascii character set. 

Border Gateway Protocol (BGP) A routing protocol used by networks on the 
Internet to exchange topology information that determines how ip data-
grams reach their destinations. 

Browser A user application that is an http client; common examples include 
Microsoft’s Internet Explorer and aol’s Netscape Navigator. 

bytes A parameter of the http Accept-Ranges header that indicates the server 
can accept future range requests that specify bytes. 

Cache A system that remembers retrieved information so that it can return 
that information in response to subsequent requests. 
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Cache Array Routing Protocol (CARP) A set of rules that cooperating cache 
servers can use to distribute cached objects among themselves without 
overlap. 

Cache-Control An http general header that directs the behavior of interme-
diate caches through which the message passes. 

Certificate In general, data that both includes and validates a public key. Also, 
an ssl message that carries a certificate. 

Certificate Authority An organization that issues public key certificates and 
vouchsafes for the authenticity of the party that possesses the public and 
private key pairs. 

Certificate Request An ssl message that the server uses to ask a client to pro-
duce its public key certificate and proof that it possesses the correspond-
ing private key. 

Certificate Verify An ssl message that a client uses to prove that it possesses 
the private key corresponding to a public key (carried in Certificate 
message). 

Certificate-Info An http header used with Secure http to identify a public 
key certificate. 

Change Cipher Spec An ssl message that activates the most recently negoti-
ated set of security services and parameters. 

Character Set A specific mapping of characters to a binary representation; 
ascii is a common character set. 

Chunked A special http transfer encoding that breaks a large object into 
smaller pieces and transfers the smaller pieces individually. 

Cipher Suite A combination of cryptographic algorithms, parameters, and key 
sizes. 

Client The party in a communication that initiates the exchange. 

Client error A http status code (in the range 400-499) that indicates an error 
in the client’s request. 

Client Hello An ssl message that the client uses to introduce itself and pro-
pose a set of cryptographic parameters for a session. 
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Client Key Exchange An ssl message that the client uses to transfer an en-
crypted session key that both parties will use to encrypt the remainder of 
the session. 

close A parameter in the http Connection header that tells the recipient that 
the sender will close the connection after the current request. 

Clustering A technique that combines multiple physical systems and allows 
them to act cooperatively as a single logical system. Clustering can im-
prove both performance and availability. 

cnonce A parameter of the http Authentication-Info and Authorization 
headers that carries a random value selected by the client. Random values 
strengthen security because it is difficult for adversaries to guess or pre-
dict their values. 

Comment An attribute of an http cookie that provides a brief explanation of 
the use of the cookie. 

CommentURL An attribute of an http cookie that provides a url for a de-
tailed explanation of the use of the cookie. 

Communication Protocol Rules that communicating parties follow in a 
communication exchange. Protocols specify both syntax (the format of 
exchanged messages) and semantics (how the systems respond to 
messages). 

compress An http encoding format based on the unix “compress” data com-
pression program. 

CONNECT An http method by which a client requests a tunnel to a distant 
server. 

Connection An http general header that lists other headers in the message 
that should not be forwarded by an intermediate system. Also, the logical 
association that tcp establishes between two communicating parties. 

Content Entities carried in the message body of http messages. 

Content-Encoding An http entity header that identifies the encoding of the 
object. 

Content-Language An http entity header that identifies the human lan-
guage used by the object. 
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Content-Length An http entity header that identifies the size, in bytes, of 
the object. 

Content-Location An http entity header that identifies the location of the 
object.  

Content-MD5 An http entity header that carries a message digest of the 
object. 

Content-Privacy-Domain A Secure http header that indicates the format of 
cryptographic parameters used for the session. 

Content-Range An http entity header that identifies the partial range of the 
object carried in the current message body. 

Content-Type An http entity header that identifies the type of the object. 
Also, a Secure http header that identifies the type of information se-
cured by the message. 

Cookie An http request header by which a client returns state management 
information to a server; the information would have been provided by the 
server in response to a previous request, and it allows the server to associ-
ate different requests with each other. More generally, a cookie is the 
state management information. 

Cookie2 An http request header that a client uses to indicate that it can ac-
cept http version 1.1. Set-Cookie2 headers in responses. 

count A parameter to the http Meter header by which intermediate servers 
indicate the number of times an object has been viewed. 

Credentials Information that provides and verifies an identity; examples of 
credentials include usernames and passwords and public key certificates 
(along with proof of the corresponding private key). 

Database Management System (DBMS) A software system that stores and 
organizes data for easy retrieval. 

Datagram The basic unit of information transmitted across the Internet and 
other ip-based networks. 

Date An http general header that carries the date and time that the message 
was created. 
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deflate The http encoding format that uses the zlib format defined by rfc 
1950. 

DELETE An http method by which a client requests that a server remove an 
object. 

Digest Authentication An authentication technique in which the sender 
combines data with a secret password and calculates a cryptographic 
message digest. The recipient verifies the sender’s possession of the pass-
word by repeating the calculation and checking for the same result. Note 
that both sender and recipient must know the password. 

Discard An attribute of an http cookie that asks the client to delete a cookie. 

Disk Mirroring A technology that uses multiple physical disk drives to keep 
copies of data. Should one disk drive fail, the data may be recovered from 
other disk drives. 

Domain A parameter of the http www-Authenticate header that indicates or 
hints to the client which username and password to provide. Also, an at-
tribute of an http cookie that defines the domain of servers to which the 
cookie applies. 

Domain Name System (DNS) The system and protocols used on the Internet 
to map names, such as www.waterscreek.com, to ip addresses, such as 
207.155.248.9. 

dont-report An attribute of the http meter header by which a server indi-
cates that it does not want to receive page view counts for the object. 

do-report An attribute of the http meter header by which a server indicates 
that it wants to receive page view counts for the object. 

Encoding How an object is formatted, either for storage (content encoding) or 
transfer (transfer encoding). 

Encryption-Identity An http header used by Secure http to identify the 
party for whom a message should be encrypted. 

Entity An object transferred by http. 

Entity Tag An arbitrary value that servers assign to an http entity that 
uniquely identifies that entity. 
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ETag An http response header that carries the object’s entity tag value. 

Expect An http request header by which a client indicates a behavior that it 
expects of the server. 

Expires An http entity header that identifies the time and date after which an 
object should no longer be considered valid. 

File The component of a uniform resource identifier that specifies the object 
itself; often it is a file name. 

FIN A tcp flag that indicates the party is closing the tcp connection. 

Finished An ssl message that concludes cryptographic negotiations. 

Firewall A special purpose system that monitors all information passing be-
tween a site and the Internet looking for security problems. 

Fragment The component of a uniform resource identifier that indicates a 
specific region within an object. 

Frame The smallest unit of information transferred by some network 
technologies. 

From An http request header that identifies the human user (typically an 
email address) making the request. 

Gateway A system that translates between different protocols. 

GET An http method that clients use to request objects. 

Global Load Balancing A technique that distributes multiple physical Web 
servers in multiple locations on the Internet and directs clients to the 
closest server. 

gzip An http encoding method that uses the format of the gnu gzip program.  

HEAD An http method with which a client asks a server to return the headers 
associated with an object without returning the object itself. 

Header Parameters of an http message other than the object being 
transferred. 

Host An http request header that identifies the host for the object being re-
quested. Also the component of a uniform resource identifier that indi-
cates that host. 
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Hyper Text Caching Protocol (HTCP) A communication protocol that cache 
servers can use to coordinate their operation. 

Hypertext A document that contains active links to other documents. 

Hypertext Markup Language (HTML) A language for hypertext documents. 

Hypertext Transfer Protocol (HTTP) A communications protocol for trans-
ferring hypertext documents and other objects. 

identity An http encoding method in which the object is unchanged. 

If-Match An http request header by which a client asks the server to carry out 
its request only if certain conditions (known as preconditions) are true. 

If-Modified-Since An http request header by which a client asks the server to 
carry out its request only if the object has been modified since the date 
and time specified in the header. 

If-None-Match An http request header by which a client asks the server to 
carry out its request only if certain conditions are not true. 

If-Range An http request header by which a client asks the server to return 
the requested range of an object only if the precondition is true; other-
wise, the server should return the entire object. 

If-Unmodified-Since An http request header by which a client asks the 
server to carry out its request only it the object has not been modified 
since the specified time and date. 

Informational An http status code (in the range 100-199) that provides in-
formation without indicating the final status of the request. 

Integrity Protection A security service that allows recipients to detect if data 
has been modified in transit. 

Intermediate Server A system that places itself between the client and server, 
accepting the client’s requests and forwarding them to the server. 

International Standards Organization (ISO) An organization that develops 
standards for many areas, including communication protocols. 

Internet The worldwide, interconnected collection of networks based on the 
Internet Protocol. 
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Internet Assigned Numbers Authority (IANA) The organization that assigns 
ip addresses and protocol parameters. Eventually, the Internet Corpora-
tion for Assigned Names and Numbers will assume this responsibility. 

Internet Cache Protocol (ICP) A communication protocol that cache servers 
can use to coordinate their operation. 

Internet Content Adaptation Protocol (ICAP) A communication protocol 
that can let intermediate servers adjust content, for example, to adapt it 
for handheld display screens. 

Internet Corporation for Assigned Names and Numbers (ICANN) The 
organization that assigns authority for registering and administering do-
main names on the Internet. Eventually, icann will also assume respon-
sibility for assigning ip addresses and protocol parameters. 

Internet Protocol (IP) The communication protocol that is responsible for 
delivering datagrams to their destination on the Internet. 

Internet Service Provider (ISP) A communications service provider that of-
fers connectivity to the Internet. 

Intrusion Detection System (IDS) A system that monitors networks and 
computer systems looking for activity that indicates a possible security 
breach. 

IP Address A binary value that uniquely identifies a system on the Internet, 
usually written as, for example, 172.16.1.18. 

ISO 639 An international standard that specifies two-letter abbreviations for 
human languages; for example, iso 639 designates “en” to represent 
English. 

ISO 8859-4 An international standard character set that corresponds to the 
earlier ascii standard. 

JavaScript A programming language often used within Web pages. 

Keep-Alive A non-standard http header, primarily used with http version 
1.0, that indicates a desire to keep the connection active after the current 
request. 

Key-Assign An http header used by Secure http to assign a convenient iden-
tifier to a cryptographic key. 
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Last-Modified An http entity header that indicates the time and date the 
object was last modified. 

Layer A particular set of communication services, typically provided by a single 
communications protocol. Multiple protocols, operating at distinct layers, 
provide a complete communications service. 

Linefeed The ascii character represented by the binary value 0001010 and 
used in most unix systems to indicate the end of a line of text; http uses 
the combination of a linefeed character and a return character to mark 
the end of its lines. 

LINK An http 1.0 method (and associated header) that clients could use to add 
a link to an object. 

Load Balancing The technique of using multiple physical systems to act as a 
single logical server and distributing request among the physical systems 
so that no one system is overloaded. When the physical systems are all on 
the same local network, the technique is known as local load balancing; 
when the systems are distributed across the Internet, the technique is 
known as global load balancing. 

Local Load Balancing Load balancing when the systems sharing the load are 
all located on the same local network. 

Location An http response header that identifies the location of the object. 

MAC-Info A Secure http header that carries a message authentication code 
(also known as a message digest). 

max-age An http Cache-Control directive that specifies the maximum 
amount of time an object may remain valid in a cache. Also, an http 
cookie attribute that specifies the maximum lifetime of the cookie.  

Max-Forwards An http request header that specifies the maximum number 
of intermediate servers through which the request may pass. 

max-reuses An http Meter directive that limits the number of times an ob-
ject may be returned to the same user from a cache. 

max-stale An http Cache-Control directive that specifies the maximum time 
after a cached object becomes invalid that a cache can still return it in re-
sponse to clients that indicate they will accept stale objects. 
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max-uses An http Meter directive that limits the number of times an object 
may be returned to different users from a cache. 

Message Body The part of an http message that carries the object being 
transferred. 

Message Digest A cryptographic algorithm that calculates a small binary 
value for a large object; it has the property that if the original object 
changes at all, the digest calculation result will change as well. Such algo-
rithms are also known as secure hash algorithms. 

Message Digest 5 (MD5) A particular message digest algorithm. 

Meter An http header that controls whether an object may be stored in a 
cache and, if so, gives cache servers a way to report accesses of the object 
to the origin server. 

Method The type of an http request. 

min-fresh An http Cache-Control directive that specifies the minimum age 
that must be remaining on an object for a cache server to return it. 

Mirrored Site A Web site with more than one server where each server con-
tains an identical copy of the site’s contents. 

Mozilla The informal name for the Netscape Navigator Web browser, so called 
because Netscape built upon, and intended to surpass, the then-
dominant Mosaic browser. 

Multi-homing The practice of providing a system or a Web site multiple net-
work connections to the Internet. 

must-revalidate An http Cache-Control directive that indicates an object 
should not be returned from an intermediate cache unless that cache 
server first validates its copy with the origin server. 

Mutual Authentication A security service whereby both communicating par-
ties verify each other’s identity. 

Name An http Cookie attribute that assigns a name to the cookie. 

nc Short for nonce count, a parameter of both Authentication-Info and Au-
thorization headers that indicates the number of times a particular nonce 
value has been used. 
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Network Element Control Protocol (NECP) A communications protocol by 
which servers such as cache servers can control the operation of routers, 
switches, and other network elements. 

Network Management The process of provisioning, configuring, and moni-
toring systems within a network infrastructure. 

nextnonce An http Authentication-Info parameter that servers use to pro-
vide a new nonce value to clients. 

no-cache An http Cache-Control directive that indicates an object should 
not be stored in a cache. 

nonce A parameter in http Authorization and www-Authenticate headers 
that carries a random value; used to strengthen the security of the au-
thentication exchange. Also, an http header used with Secure http. 

Nonce Count (nc) Used in its abbreviated form (nc), a parameter of both Au-
thentication-Info and Authorization headers that indicates the number 
of times a particular nonce value has been used. 

Nonce-Echo An http header used by Secure http to return a nonce value. 

no-store An http Cache-Control directive that identifies sensitive informa-
tion (such as a password) that should not be stored with an object in a 
cache. 

no-transform An http Cache-Control directive that indicates an object 
should not be transformed (e.g. compressed to save space) by a cache 
server. 

only-if-cached An http Cache-Control directive that asks an intermediate 
server to respond to a request only with a cached copy. 

opaque A parameter that carries an arbitrary value provided by a server in an 
www-Authenticate header (and returned by the client in the subsequent 
Authorization header) that the server uses internally to facilitate process-
ing the request. 

OPTIONS An http method by which a client asks a server the options its sup-
ports, either in general or in conjunction with a specific resource. 

Origin Server The ultimate source of an http resource. 
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Packet The smallest unit of information transferred by some network 
technologies. 

Page View The retrieval of an object by a client. 

Parallel Servers A database technology that operates multiple physical sys-
tems as if they were a single logical system. 

Password The component of a uniform resource identifier corresponding to 
the user’s password. 

Path An attribute of an http cookie that defines the areas within the site to 
which the cookie applies. Also, the component of a uniform resource 
identifier that defines a region within a site. 

Peer The system with which one system is communicating. 

Persistence A technique that keeps the tcp connection open after an initial 
http exchange so that the connection may be reused for subsequent 
exchanges. 

Pipelining A technique by which a client sends one http request immediately 
after another, without waiting for a response to the earlier request. 

Port The tcp address of a particular application within a system. The ip ad-
dress identifies the system, while the port number distinguishes multiple 
applications within that system. http cookies include a port attribute, 
and uniform resource identifiers may include a port component. 

POST An http method that clients use to provide data to a resource on the 
server, most commonly used to submit forms. 

Pragma An http general header that provides additional information about a 
message. 

Prearranged-Key-Info A Secure http header that identifies keys previously 
established by the communicating parties. 

Precondition A condition that the client wishes the server to confirm before 
carrying out a request. Preconditions are specified in If-Match and simi-
lar headers. 

Private Key One key of a pair used in asymmetric cryptography. The private 
key is never shared with other parties. 
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private An http Cache-Control directive that indicates that a particular ob-
ject is private and should only be returned by cache servers to the same 
user. 

Profiling A technique used by intrusion detection systems by which they re-
cord a site’s normal network and system activity and trigger on any sig-
nificant deviations from that normal behavior. 

Protocol Rules that communicating parties follow in a communication ex-
change. Protocols specify both syntax (the format of exchanged mes-
sages) and semantics (how the systems respond to messages). Also the 
component of a uniform resource identifier that indicates the particular 
protocol to use to access an object. 

Proxy Auto Configuration (PAC) A script that configures http clients with 
information about which proxies to use and when and how to use them. 

Proxy An intermediate server that receives client requests and forwards them 
to the actual server. 

Proxy Cache A proxy server that also functions as a cache. 

Proxy-Authenticate An http header that a proxy server uses to request au-
thentication of a client. 

Proxy-Authorization An http header that clients use to authenticate them-
selves to a proxy server. 

proxy-revalidate An http Cache-Control directive that tells proxy servers 
not to return a cached copy of the object without validating that copy 
with the origin server. 

public An http Cache-Control directive that tells cache servers that the ob-
ject may be returned to other clients, not just the original requestor. 

Public Key One of a pair of keys used in asymmetric cryptography. The public 
key may be freely shared with other parties without compromising 
security. 

Public Key Certificate A collection of data that both includes and validates a 
public key. 

Public Key Cryptography A type of cryptography which uses two different 
keys—one to encrypt messages and another to decrypt the messages. The 
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keys are constructed so that knowledge of the encryption key does not 
reveal the decryption key. Also known as asymmetric cryptography. 

PUT An http method that clients use to send objects to servers. 

q A parameter known as quality factor that may be included in Accept, Accept-
Charset, Accept-Encoding, Accept-Language, and te headers. The qual-
ity factor allows client to express a relative preference for different op-
tions of each of these headers. 

qop A parameter of Authentication-Info, Authorization, and www-
Authenticate headers that indicates the type of security services re-
quested or used for an exchange. 

Quality Factor (q)  Used in its abbreviated form (q), a parameter in Accept, 
Accept-Charset, Accept-Encoding, Accept-Language, and te headers. 
The quality factor allows client to express a relative preference for differ-
ent options of each of these headers. 

Quality of Protection (qop) Used in its abbreviated form (qop), a parameter 
of Authentication-Info, Authorization, and www-Authenticate headers 
that indicates the type of security services requested or used for an ex-
change. 

Query A component of a uniform resource identifier that provides additional 
parameters to the file. The query component is most commonly used 
with Web forms to convey simple user input, normally with a get 
method instead of a post. 

Range An http request header that a client uses to request part of a resource 
rather than the entire object. 

realm A parameter in Authorization and www-Authenticate headers that 
specifies a particular application or service for which the user is being 
authorized. 

Reason-Phrase A text description of an http status that appears in a Status-
Line. 

Redirection The process by which a server tells a client to reissue its request 
but for a different uniform resource identifier. Redirection status codes 
are in the range 300-399. 
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Referer An http request header in which the client indicates the source of a 
request; often this header contains the uniform resource identifier of the 
Web page that contains the link the user followed. 

Reliability The property of a system that measures the degree to which the 
system operates properly. 

Repeat Client Security A security service introduced in http version 1.1 that 
allows the client and server to renegotiate keys. Key renegotiation pro-
vides additional security for clients that frequent the same server. 

Replay Protection A security service that prevents adversaries from recording 
valid messages and later replaying those messages and successfully mas-
querading as an authorized client. 

Replication A database technology that maintains multiple synchronized cop-
ies of databases on different physical systems. 

Request The message that initiates a client/server interaction. Clients send 
requests to servers, and servers reply with responses. 

Request for Comments (RFC) A specification or other document produced by 
the Internet Engineering Task Force; the http version 1. 1 specification is 
rfc number 2616. 

Request-Line The first line of a client’s http message, consisting of an http 
method, a uniform resource identifier (the Request-uri), and an http 
version. 

Request-URI The part of an http Request-Line that specified the uniform 
resource identifier for the request. 

Response The server’s answer to a client’s request. Also, a parameter of the 
http Authorization header that carries the result of a client’s message 
digest calculation. 

Retry-After An http response header that gives the client a time after which 
it should retry its request. 

Return The ascii character represented by the binary value 0001101 and used 
in Macintosh systems to indicate the end of a line of text; http uses the 
combination of a linefeed character and a return character to mark the 
end of its lines. 
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Reverse Proxy Cache A proxy cache server deployed by or operated for Web 
servers rather than Web clients. 

rspauth A parameter of the Authentication-Info header that carries the result 
of a server’s message digest calculation. 

RST A tcp flag that indicates a connection should be reset. 

Scaleability The quality of a system or design that permits it to easily and 
gracefully accommodate significant increases in load. 

Secure An attribute of an http cookie that tells the client to return the cookie 
only on subsequent requests that are secure from eavesdropping. 

Secure Hash A cryptographic algorithm that calculates a small binary value for 
a large object; it has the property that if the original object changes at all, 
the secure hash calculation result will change as well. Such algorithms are 
also known as message digest algorithms.  

Secure HTTP (SHTTP) A communications protocol based on http, as well as 
several enhancements to http itself, that provides for secure 
communications. shttp is classified as an experimental protocol and is 
rarely used today. 

Secure Sockets Layer (SSL) A communications protocol developed initially by 
Netscape Communications that provides a secure communications chan-
nel for various applications. ssl is commonly used to secure Web com-
munications today. The Transport Layer Security protocol is a newer 
version of ssl. 

Security Protecting communications against various adversaries, including 
those that masquerade, eavesdrop, or alter the message contents. 

Segment A single tcp message. 

Server The passive party in a client/server communications exchange. Clients 
initiate the communication, and servers respond to clients’ requests. Also, 
an http response header that allows a server to indicate its vendor, ver-
sion number, etc. 

Server error An http response code in the range 500-599 that indicates an 
error in the server. 
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Server Hello An ssl message in which the server selects security parameters 
for the session. 

Server Hello Done An ssl message that servers send to indicate that they have 
concluded their part of the initial ssl negotiation. 

Session ID An arbitrary value that parties use to identify an ssl session. Both 
parties can resume an earlier session by referencing its session id during 
initial negotiations. 

Set-Cookie2  An http response header that servers use to send cookies to 
clients. 

SHTTP-Certificate-Types An http header used by Secure http to identify 
the format of public key certificates. 

SHTTP-Cryptopts An http header used by Secure http to carry general 
cryptographic options. 

SHTTP-Key-Exchange-Algorithms An http header used by Secure http to 
identify cryptographic algorithms used to exchange keys. 

SHTTP-Message-Digest-Algorithms An http header used by Secure http 
to identity cryptographic algorithms used to calculate the digest of a 
message. 

SHTTP-Privacy-Domain An http header used by Secure http to identify the 
format of cryptographic information. 

SHTTP-Privacy-Enhancements An http header used by Secure http to list 
privacy enhancements desired or used for a message. 

SHTTP-Signature-Algorithms An http header used by Secure http to 
identify cryptographic algorithms used to digitally sign messages. 

SHTTP-Symmetric-Content-Algorithms An http header used by Secure 
http to identify cryptographic algorithms used to encrypt message 
contents. 

SHTTP-Symmetric-Header-Algorithms An http header used by Secure 
http to identify cryptographic algorithms used to encrypt message 
headers. 
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Signatures A technique used by intrusion detection systems that detects at-
tacks by comparing network and system behavior against behavior that is 
known to indicate attacks. 

Simple Network Management Protocol (SNMP) A communications proto-
col that allows network administrators to remotely monitor, configure, 
and manage networked systems. 

Site The collection of systems that provide service to Web clients, including 
http servers, load balancers, caches, firewalls, application servers, and 
database management systems. 

Site Monitoring A service that monitors the health and performance of a Web 
site, usually by simulating the behavior of users. 

s-maxage  An http Cache-Control directive that limits the amount of time 
an object may be kept in a cache if that object is accessed by multiple 
clients. 

SSL Acceleration A technique for improving Web site performance by using 
special purpose hardware to perform ssl’s cryptographic calculations. 
Such hardware is generally faster than software implementations. 

stale A parameter of the www-Authenticate header by which the server indi-
cates that it has received a request based on parameters that have already 
expired. 

Standby Database A technique of database operation that records the actions 
in the primary database and replays those actions, generally after some 
delay, on a backup database. 

State Management In http, the process of associating different client re-
quests with each other so as to form a coherent session; http state man-
agement relies on cookies. 

Stateless The property of normal http communications where any request is 
independent of all others. 

Status Code A three-digit numeric value that indicates the result of an http 
request. 

Status-Code The part of an http Status-Line that carries the numeric status 
code. 
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Status-Line The first line of an http response; it consists of an http version, 
a Status-Code, and a Reason-Phrase. 

Strong A property of an entity tag that implies objects with the same entity tag 
value are identical. 

Subtype A minor classification of content types. For example, the content type 
“text/xml” has a major classification (type) of “text” and a minor classifi-
cation (subtype) of “xml.” 

Successful  http status codes in the range 200-299 that indicate that the cli-
ent’s request succeeded. 

Symmetric Cryptography A type of cryptography in which both parties pos-
sess identical keys. 

SYN A tcp flag that indicates the start of a connection. 

TCP Multiplexing A technique for improving Web site performance that uses 
special purpose systems to manage multiple tcp connections to clients, 
relaying requests and responses on a smaller number of connections to 
the servers. 

TE An http request header that tells the server which transfer encodings the 
client can accept in a response. 

Timeout An http meter directive that the origin server uses to specify the 
maximum time between cache server reports. 

Title An http 1.0 header that carries the title of a object. 

TRACE An http method that allows a client to discover the intermediate sys-
tems between it and the origin server. A server responds to a trace re-
quest by returning the request itself (including any Via headers) in the 
message body. 

Trailer An http general header that indicates some additional headers follow 
the message body. 

Transfer-Encoding An http response header that identifies the encoding 
format applied to the object for its transfer to the client. 
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Transmission Control Protocol (TCP) A reliable transport-layer protocol used 
on the Internet. tcp ensures that data is delivered without error and in 
the correct order to the recipient system. 

Transparent Cache A cache server that is generally invisible to clients and 
servers alike. Transparent caches intercept http requests (or have routers 
or other network elements intercept requests on their behalf ) without the 
knowledge of the client. 

Transport Layer Security (TLS) The successor to the Secure Sockets Layer 
protocol, defined by the Internet Engineering Task Force. Like ssl, tls 
provides a secure communications channel for various applications. 

Transport Protocol A communications protocol that operates at the transport 
layer of a communications system. Transport protocols generally have the 
responsibility for providing an appropriate level of reliability to the 
communications. 

Tunnel An intermediate server that adds some additional service (such a secu-
rity) to the communications between a client and origin server. 

Type A major classification of content types. For example, the content type 
“text/xml” has a major classification (type) of “text” and a minor classifi-
cation (subtype) of “xml.” 

Unicode A character set that can represent not just Roman characters (as is the 
case of ascii), but also characters from languages such as Chinese. 

Uniform Resource Identifier (URI) A textual description of an object on the 
Internet; most commonly a uniform resource locator (url). Also, when 
used in its abbreviated form (uri), a parameter of the Authorization 
header that repeats the uri of the request. 

Uniform Resource Locator (URL) A uniform resource identifier that describes 
an object by giving its location on the Internet, including the server stor-
ing the object, the application protocol needed to retrieve it, and the 
name of the object on that server. Also, an http 1.0 header that carries 
the url of an object. 

UNLINK An http 1.0 method that clients could use to remove a link from an 
object. 
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Upgrade An http general header that asks the other party to upgrade the 
communications to a different protocol. 

User-Agent  An http general header that identifies the client’s vendor, version 
number, etc. 

username A parameter of an http Authorization header that contains the 
username for the request. Also, the component of a uniform resource 
identifier that contains a username. 

Vary An http response header that lists http headers other than the Request-
uri that determined the server’s response. Cache servers can use this in-
formation to determine if it is appropriate to return the same object on 
subsequent requests. 

Version An attribute of http cookies that identifies the version of http state 
management that the parties are using; the current version is 1. 

Virtual Host A single physical Web server acting as several different Web sites. 
Internet service providers that offer Web hosting often share their sys-
tems among multiple customers in this manner. 

Warning An http general header that carries additional information about a 
message, usually intended to warn of potential cache problems. 

Weak A property of an entity tag that implies objects with the same entity tag 
value are equivalent, but not necessarily identical. 

Web Short for the World Wide Web, the collection of http servers and appli-
cations accessible on the Internet. 

Web Cache Communication Protocol (WCCP) A communications protocol 
developed by Cisco Systems that allows cache servers to coordinate their 
operation with access routers. 

Web Proxy Auto Discovery (WPAD) A set of rules that clients may use to 
automatically locate a proxy auto configuration script. 

will-report-and-limit An http meter directive by which a proxy server indi-
cates it can support metering. 

wont-ask An http meter directive by which an origin server indicates that it 
will not ask for metering of an object. 
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wont-limit An http meter directive by which a proxy server indicates that it 
will support metering (namely, by reporting usage), but it will not limit 
page views. 

wont-report An http meter directive by which a proxy server indicates that it 
will support metering (namely, by limiting page views), but it will not re-
port usage. 

World Wide Web (WWW) The collection of http servers and applications 
accessible on the Internet. 

WWW-Authenticate An http response header that asks a client to reissue its 
request with user authentication credentials. 

Your-Key-Pattern An http header used by Secure http to identify a crypto-
graphic key. 
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Age header, 61–64 
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Application layer protocols, 8 
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Application protocol, 5, 6 

Application servers, 257–260 
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Asterisk 
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If-Match header and, 87–88 
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as a wildcard, 57 

Authentication, 161. See also Web authentication 

Network Element Control Protocol, 212 

Authentication credentials, 204 

Authentication-Info header, 65, 140, 148 

Authentication-Info parameters, 141, 146 

auth-int, 143, 154, 155 

Authorization header, 65, 125, 132, 144, 145, 147, 153 

Authorization parameters, 139–140 

auth value, 143, 154 
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B 
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Banner ads, 40–41 

Base64 encoding, 76, 132 

Basic Authentication, 130–133 

problems with, 133 
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Blank line, in an http request, 51 

Border Gateway Protocol (bgp), 248 

Border Gateway Protocol paths, 185 

Browser-based user interface, 120–121 

Browsers. See also Web browsers 

configuring, 194–197 

cookie acceptance by, 43 

Buckets mechanism, 203 

“Bullet-proof ” Web sites, 241–242, 275 

Byte range, client request for, 60–61 

bytes, 78 

C 

Cache Array Routing Protocol (carp), 222–225. See 

also carp entries 

Cache contents, coordination of, 222–225 

Cache-Control: no-cache header, 102 

Cache-Control directives, 66 

Cache-Control header, 61, 64, 65–70 

Cached objects 

age of, 64 

freshness calculations for, 63 

Cached resources, age of, 61 

Cache freshness calculations, parameters for, 63 

Cache problems, 113–114 

Caches 

content modification for, 217 

efficient use of, 88–90 

Cache server networks, 193–194 

Cache servers, 26, 33–35, 201, 202–203. See also Proxy 

servers: Servers 

communication among, 212–216 

communication with network elements, 204, 205 

HEAD operation and, 25 

Hyper Text Caching Protocol and, 216–217 

Caching. See also Advanced caching 

controversies over, 191 

proxy servers and, 32 

redundant, 223 

Caching implementations, 186–194 

Caching performance, improving, 81–82 

Caching protocols, 194 

references for, 281 

Cailliau, Robert, 2 

carp configuration, global information in, 224 

carp configuration file, server information in, 224 

carp routing algorithm, 225 

Censorware Project, 2 

Certificate authorities, 161 

Certificate requests, 165 

Change and Configuration Management, 274 

Character encodings, 58–59 

Character sets, defined, 59 

Chunked transfer encoding, 74, 107, 108, 109 

Chunks, 109 

Cipher suites, 169 

Cisco Systems, 191, 200, 204 

C-Language library, 81 
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Client digest calculation, for integrity protection, 154–

155 

Client error status codes, 124–127 

Client redirection, 29–30 

Clients, 13–19. See also Frequent clients 

authentication of, 102, 114–115 

cookie acceptance by, 43–44 

cryptographic authentication of, 163, 165–168 

redirecting to a new uri, 93–94 

state information about, 38 

Client/server communication, initiating, 14 

clr message, 221–222 
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Clustering, 251–254 

Cluster nodes, failure of, 269 

cnonce parameter, 139, 141, 147 

Comment attribute, 41 

CommentURL attribute, 41 

Communications, eavesdropping on, 157–158. See also 

http communications 

Communications protocol, upgrades to, 110 

Conditional requests, 86 

Confidentiality, 161 

Connection: close header, 72 

Connection: Keep-Alive header, 72 

Connection: Meter header, 100 

Connection: Upgrade header, 110 

Connection header, 70–72, 170, 171 

Connection types, performance of, 18–19 

CONNECT method, 49, 110, 172 

CONNECT operation, 24 

Content-Encoding header, 73–74 

Content encodings, 59 

Content-Language header, 74 

Content-Length header, 74–75, 108, 126 

Content-Length header field, 107 

Content-Location header, 75, 94 

Content-MD5 header, 76–77 

Content protection, 77 

Content-Range header, 77–78, 103, 122 

Content-Type header, 73, 78–79 

Content types, 57 

Cookie attributes, 41–42 

default values for, 42–43 

Cookie header, 79, 80 

Cookies, 37–45 

accepting, 42–44 

defined, 39 

http rules governing, 39 

rejecting, 43–44 

returning, 44–45 

rules for rejecting, 44 

state management, 106 

tracking Web sessions via, 256 

Cookie2 header, 80 

Cooperating servers, 26–37 

count directive, 101 

count=n/m directive, 99 

count values, 101 
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Cryptographic algorithms, 225 

Cryptographic calculation hardware, 226 

Cryptographic digest, 212 

Cryptographic principles, 134–135 

Cryptography, 150. See also Public key cryptography 

D 

Database Management Systems (dbmss), 260–265, 277 

vendor specifics for, 261 

Database reliability technologies, 264 

Database replication, 262–263 

Datagrams, 7 

Date header, 61, 80–81 

Dates, If-Range header and, 91–92 

DELETE method, 49 

DELETE operation, 23–24 

Denial-of-service attacks, 249 

Digest Authentication. See Improved Digest 

Authentication; Original Digest Authentication 

Digest Authentication Enhancements, 142 

Digest calculation, with MD5-sess algorithm, 151–152 

Digest values, representing, 138 

Digital certificate, 161 

Directives, 99–101 

Discard attribute, 41, 42 

dns exchange, 28 
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Document view resetting, 121–122 
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Domain Name System (dns) protocol, 180 

domain parameter, 137 

dont-report directive, 99, 100 

do-report directive, 99, 100 

Dynamic Web applications, 256–257 

E 

Echo messages, 213, 214 

Electronic commerce, 163 

Elliptic curve cryptography, 169 

en code, 60 

End user authentication, 265 
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Entity tags, 81, 86 

versus dates, 92 

ETag header, 81–82, 136 

ETag values, 82, 86, 90 

Expect: 100-continue header, 117, 118 

Expect header, 83–84, 127 

Expires header, 66, 84, 102, 107 

Exterior firewalls, 254–255. See also Firewalls 
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Failed intermediaries, 94–95 

Failover support, session-level, 260 

Field values, in message headers, 54 

File deletion, 23–24 

File upload, 22–23 

fin (finished) flag, 15 

FindProxyForURL() function, 195 

Firewalls, 32, 249, 254–255 

500 Internal Server Error status code, 82, 127 

501 Not Implemented status code, 127 

502 Bad Gateway status code, 128 

503 Service Unavailable status code, 105, 128 

504 Gateway Timeout status code, 128 

505 Version Not Supported status code, 128 

5xx status codes, 117, 127–128 
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400 Bad Request status code, 124 

401 Unauthorized response, 118, 132, 135, 136, 142, 
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401 Unauthorized status, 115 

401 Unauthorized status code, 124, 130 
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403 Forbidden status code, 125 

404 Not Found status code, 125 

405 Method Not Allowed status, 65 

405 Method Not Allowed status code, 125 

406 Not Acceptable status code, 125 

407 Proxy Authentication Required status, 102 

407 Proxy Authentication Required status 

code, 125–126 

408 Request Timeout status code, 126 

409 Conflict status code, 126 

410 Gone status code, 126 

411 Length Required status code, 126 

412 Precondition Failed status, 87, 91, 93 

412 Precondition Failed status code, 126 

413 Request Entity Too Large, 118 

413 Request Entity Too Large status code, 126 

414 Request-URI Too Long status code, 126 

415 Unsupported Media Type status code, 127 

416 Requested Range Bad status code, 127 

417 Expectation Failed status, 83 

417 Expectation Failed status code, 127 
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426 Upgrade Required status code, 127, 171 

4xx status codes, 116–117, 124–127 
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From header, 84 
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Gateways, 32–33 
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Generic Routing Encapsulation (gre), 203, 208 

GET message, 171 

GET method, 49, 90 

GET operation, 19–20, 29, 31 

GET request, 40, 41, 88, 101, 104, 119, 120, 122, 123, 136, 
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Global load balancers, 181–182, 184–185 

Global load balancing, 179–180, 244–246 

versus reverse proxy caching, 193 

gnu gzip format, 59 

gzip program, 73 

gzip transfer encodings, 106 

H 

Hardware, for cryptographic calculations, 226 

Hardware clustering, 261 

Hardware clustering products, 273–274 

Header fields, in http messages, 53–115 

Headers. See also http headers 

cache servers and, 35 
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HEAD method, 49, 50, 74, 78, 90 

HEAD operation, 25 

HEAD request, 37, 101, 119, 122 
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Hop-by-hop headers, 71 

Host-based intrusion detection, 271 

Host header, 29, 85–86 

Host parameter, 195 

htcp messages, 217. See also Hyper Text Caching 

Protocol (htcp) 

htcp monitor responses, 220–221 

html. See Hypertext Markup Language (html) 

http authorization, 131. See also Hypertext Transfer 

Protocol (http) 

http caching, icp and, 216 

http communications, 47–128. See also http 

      messages 

proxy servers and, 32 

securing, 162 

status codes and, 115–128 

http content, modifications to, 77 

http Content-Encodings, 73 

http header fields, 55–57 

http headers, 199. See also Headers 

version 1.1, 236–238 

http implementation, identifying, 110–111 

http messages, 6–8, 8, 47. See also messages 

header fields in, 53–115 

rules for determining the end of, 75 

structure of, 48–53 

http methods, 49–50 

version 1.1, 235 

http performance. See Advanced caching 

http persistence, 166, 244 

http port 443, 158 

http protocol, 27, 58 

user operations in, 19–23 

http redirection, 245 

http requests, 15, 48–51 

distributing, 180–182 

http responses, 51–53 
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http security mechanisms, 130 

http servers, performance of, 108 

http sessions, upgrading to tls within, 169–172 

http specifications, 81 

references for, 280 

http standards, 3 

http state management, 79, 106 

http status code categories, 53 

https uri scheme, 158 

http switches, 191 

http versions 

differences among, 231–234 

headers available in, 233–234 

methods available in, 232 

version 0.9, 229, 230 

version 1.0, 230–231 

version 1.1, 16, 29, 71, 85, 102, 108, 114, 142, 230, 231, 

232 

references for, 282 

in the Request-Line, 50–51 

support for, 234–239 

Hyper Text Caching Protocol (htcp), 194, 216–222. 

See also htcp messages 

cache information provided by, 219 

Hypertext Markup Language (html), 3 

Hypertext Transfer Protocol (http), 1–2, 5, 256. See 

also http entries; Hypertext Transfer Protocol 

(http) operation; Secure http 

accelerating, 177–228 

evolution and deployment of, 229–239 

securing, 129–175 

software used to implement, 105 

World Wide Web and, 2–3 

Hypertext Transfer Protocol (http) operation, 13–45 

additional operations in, 24–26 

clients and servers in, 13–19 

cookies and state maintenance in, 37–45 

cooperating servers and, 26–37 

I 

icmp echo requests, 185 

icp messages, 214, 216. See also Internet Cache 

Protocol (icp) 

icp query exchange, 215 

Identity encoding, 59 

If-Match header, 82, 86–88, 123, 126 

If-Modified-Since header, 88–90, 123 

If-None-Match header, 82, 90  

If-Range header, 91–92 

If-Unmodified-Since header, 92–93 

Improved Digest Authentication, 138, 139, 141, 142–143. 

See also Original Digest Authentication 

Informational status codes, 117–119 

Integrity protection, 143, 152–156 

client digest calculation for, 154–155 

server digest calculation for, 156 

triggering, 154 

Interior firewalls, 254–255 

Intermediate adversaries, 153 

Intermediate cache servers, 35 

Intermediate dns servers, 246 

Intermediate server failure, 94–95 

detecting, 98 

Intermediate servers, 26, 102, 112 

Intermediate systems, limiting, 96 

Internal network management, 268–270 

International Standards Organization (iso), 5 

International Web sites, 179–180 

Internet 

demand for Web sites and, 27 

references for, 279–280 

roots of, 2 

Web site connection to, 242–249 

Internet architecture, 3–8 
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Internet Assigned Numbers Authority (iana), 57, 59, 

103, 248 

Internet Cache Protocol (icp), 194, 212–216. See also 

icp messages 

shortcomings of, 216 

Internet connections, multiple, 276 

Internet connectivity, load balancers and, 183 

Internet Corporation for Assigned Names and 

Numbers (icann), 57, 248 

Internet Engineering Steering Group (iesg), 231 

Internet Engineering Task Force (ietf), 103, 168, 169, 

230 

references for, 279–280 

Internet Explorer, 111, 158, 188 

dialog box for, 195 

Internet firewall, 188 

Internet Protocol (ip), 5. See also ip entries 

Internet routing protocols, 248 

Internet Service Providers (isps), 27, 200 

diversity of, 243 

http caching and, 189–190 

Internet services, 4 

Intrusion detection, 270–273, 277 

ip addresses, 180. See also Internet Protocol (ip) 

assignment of, 29 

obtaining, 248 

in Web hosting, 85 

ip addressing, redundant connections and, 247 

ip diagram, 7 

iso 8859-1 character set, 58 

J 

JavaScript code, 195 

JavaScript object, 30 

K 

Keep-Alive header, 72 

Kerberos, 169 

Key management, 159 

Key pairs, 160 

Keys, 149–150, 159. See also Private key; Public key 

Key value, exchanging, 159–160 

L 

Language hierarchy, 60 

Languages, designating, 59–60 

Last-Modified header, 80, 88, 89, 93 

Layer 2 forwarding, 208 

Layer 3 forwarding, 208 

Layer 4 (7) switching, 182 

Linefeed character, 48 

LINK method, 232 

Links, redundant, 242–246 

Load balancers, 181–182 

Load balancing, 177–186 

request distribution and, 180–182 

server location and, 178–180 

target server and, 182–186 

target server determination and, 182–186 

Load Factor, 224 

Local area network, 34 

Local cache management, 111 

Local caches, monitoring the contents of, 219 

Local load balancers, 183, 185 

Local load balancing, 178–179, 251–254 

Location header, 75, 93–94, 119, 181 

Logical communication, 6 

Login process, for Web sites, 133 

Loops, 95–96, 98 
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Macintosh systems, 48 

Man-in-the-middle attacks, 153 

Max-Age attribute, 42, 43 

max-age directive, 64, 66–67, 84 

max-age=0 directive, 68 

max-age value, 63 

Max-Forwards, 112 

Max-Forwards header, 94–98 

max-reuses=n directive, 99 

max-reuses directive, 100 

max-stale directive, 67 

max-uses=n directive, 99 

max-uses directive, 100 

MD5 algorithm, 150 

MD5-sess algorithm, 150, 151 

Media types, 57 

Message body, 48, 51, 52 

preferences for, 59 

transfer encoding format of, 108 

Message content, changes to, 77 

Message digest, 135 

Message Digest 5 (md5) algorithm, 76, 135 

Message digest algorithms, 135 

Message encryption, 156–157 

Message headers, 48, 51, 53–57, 70 

in the Status-Line, 52 

Message integrity, 161 

Message length, determining, 74 

Messages. See also http messages 

interception of, 153 

tracing the path of, 112–113 

Meter: timeout=n directive, 100 

Meter directives, 99–100 

Meter header, 36–37, 99–101 

Metering process, 100 

Methods. See http methods 

Microsoft Internet Explorer. See Internet Explorer 

min-fresh directive, 67 

Mirrored Web sites, 243 

reliability through, 250–251 

mon messages, 219–220 

Multi-homing, 246–249 

Multi-layer security architectures, 254–255 

Multilevel hierarchy, 60 

Multiple application servers, 259, 260 

Multiple Internet connections, 276 

Multiple Internet Service Providers (isps), 243 

Multiple ip addresses, 247–248 

Multiple proxies, 31 

Multiple servers, TRACE messages and, 26 

Multipurpose Internet Mail Extensions (mime), 76 

must-revalidate directive, 67–68 

Mutual authentication, 145–149 

N 

nc parameter, 139, 141, 145 

necp_exception_add_ack message, 209 

necp_exception_add message, 209 

necp_exception_del_ack message, 209 

necp_exception_del message, 209 

necp_exception_query message, 209 

necp_exception_reset_ack message, 209 

necp_exception_reset message, 209 

necp_exception_resp message, 209 

necp_init_ack message, 205, 206 

necp_init message, 205, 206 

necp_keepalive_ack messages, 207 

necp_keepalive messages, 207 

necp messages, 205–209. See also Network Element 

Control Protocol (necp) 

necp_start_ack message, 208 

necp_start message, 208 
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necp_stop_ack message, 208 

necp_stop message, 208 

Netscape Communications, 157, 168 

Netscape Navigator, 111 

Network-based intrusion detection, 272 

Network Element Control Protocol (necp), 191, 204–

212. See also necp messages 

security support in, 211 

Network management/monitoring, 277 

Network technology, 4 

nextnonce parameter, 140, 141, 142 

no-cache="Accept-Ranges", 68 

no-cache directive, 68 

nonce parameter, 136, 137, 139, 140 

no-store directive, 68 

no-transfer directive, 69 

O 

Objects 

dating in a local cache, 93 

deleting from servers, 23 

local copies of, 213, 214 

multiple requests for, 86–87 

requesting part of, 78, 91–92 

in Web pages, 16 

100 Continue status, 82, 83 

100 Continue status code, 117–118 

101 Switching Protocols response, 118–119 

101 Switching Protocols status, 82, 110 

One-way functions, 135 

1xx status codes, 115, 117–119 

only-if-cached directive, 69 

opaque parameter, 137, 140 

Open Systems Interconnection Reference Model, 5 

OPTIONS message, 24–25, 170 

OPTIONS method, 50, 94 

Organizations, proxy caches and, 187–188 

Original Digest Authentication, 133–142. See also 

Improved Digest Authentication 

client calculation for, 138 

Origin servers, 31, 62, 81 

client interaction and, 35–36 

directives and, 99 

htcp and, 221 

load reduction on, 34–35 

usage reports to, 101 

P 

pac helper functions, 196–197. See also Proxy Auto 

Configuration (pac) 

Packets, 5, 7 

pac location from wpad, default values for, 199 

pac retrieval options, 196 

pac scripts, 189, 190 

Padlock icon, 133, 158, 159 

Page views, counting and limiting, 35–37 

Parallel servers, 261–262 

Passive monitoring, 273 

Passwords, 130, 134, 212 

Path attribute, 42, 43 

Performance. See also Advanced caching 

of connection types, 18–19 

If-Range header and, 91–92 

Persistence, 15–17, 257 

Persistent connections, 17, 108 

Connection header and, 71 

Persistent cookies, 43 

Pipelining, 17–19, 141 

Platform security, 265–266 

Policy enforcement, proxy servers and, 32 

Port attribute, 42, 43 

POST message, 152 

POST method, 50, 133 

POST operation, 20–22 
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POST requests, 120, 123, 136 

PostScript file, 73 

Pragma: no-cache response, 102 

Pragma header, 102 

Preconfiguration, of Web browsers, 188–189 

Privacy, cookies and, 39. See also Security 

private directive, 69 

Private key, 160 

Probe requests, 184 

Probes, in site monitoring, 266–267, 268 

Profiling strategy, 273 

Protocol identifier, 204, 208 

Protocol interface, 6 

Protocol layers, 3–8 

Protocol stack, 4, 8 

Protocol upgrades, 110, 118–119 

Provider-independent ip addresses, 248 

Proxy-Authenticate header, 102, 126–127 

Proxy-Authorization header, 103 

Proxy Auto Configuration (pac), 189. See also pac 

entries 

Proxy Auto Configuration (pac) scripts, 194–197 

Proxy caches, 186, 187–189 

Proxy operation, 34 

proxy-revalidate directive, 69 

Proxy servers, 26, 30–32. See also Cache servers; 

Servers 

authentication with, 126–127 

communication through, 83–84 

directives and, 99 

functions of, 32 

If-Modified header and, 89 

message path through, 112–113 

metering process and, 100 

receipt of invalid response by, 128 

tls upgrades and, 172 

public directive, 69–70 

Public key, 160 

Public key authentication, 160 

Public key certificate, 161 

client possession of, 166 

Public key cryptography, 157, 159–161 

Public key encryption algorithms, 160 

Public key technology, disadvantages of, 160 

PUT method, 50, 65, 87, 93 

PUT operation, 22–23 

PUT requests, 90, 93, 126, 136 

Q 

qop parameter, 137, 138, 140, 141, 143, 155 

qop value, 154 

Quality factor, 57, 58, 106 

Queried systems, 207–208 

Query messages, 211 

R 

Range header, 78, 89, 91, 103, 122, 127 

Range requests, 60–61 

realm parameter, 136, 137, 139, 140 

Reason-Phrase, 53 

Redirection, client, 29–30 

Redirection status codes, 122–124 

Redundant Array of Inexpensive Disks (raid) system, 

277 

Referer header, 103–104 

Reliability, Web site, 241–242 

Remote disk mirroring, 261 

Replay attacks, protection against, 144–145 

Request headers, 48, 51 

Request-Line, 48–51 

http version in, 50–51 

Request looping, 94, 95–96, 98 
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Requests 

alternative locations for, 122 

conditional, 86 

distributing, 178, 180–182 

effect on traffic sessions, 211 

reissuing, 122 

retrying, 105 

Request-URI, 50 

Réseaux ip Européens, 248 

Resource age, estimates of, 63 

Resource format, 73 

Resources. See also Uniform Resource Identifiers 

(uris) 

age of, 61 

forbidden, 125 

identifying, 81–82 

multiple editing of, 86–87 

new locations for, 123, 124 

range of, 127 

range requests for, 60–61 

requesting parts of, 103 

Response headers, 52 

Response messages, size of, 108–109 

response parameter, 139, 140 

Response preferences, 59–60 

Responses, invalid, 128 

Retry-After header, 105, 126, 128 

Return character, 48 

Reverse proxy caches, 186, 187 

Reverse proxy caching, 191–192 

versus global load balancing, 193 

rfc 850 specification, 80 

rfc 1123 specification, 80 

rfc 2045 specification, 76 

Rivest, Ron, 135 

Round-robin algorithm, 183 

Round-trip time measurements, 215–216 

Routing algorithm, 223 

rspauth parameter, 141 

S 

Scalability 

local load balancing and, 252 

Web site, 242 

Search Database button, 21 

Secret value, 136 

Secure attribute, 42, 43 

Secure hash, 135 

Secure Hash Algorithm (sha), 135 

Secure Hash Algorithm (sha-1) function, 212 

Secure http (shttp), 130, 172–175 

cryptographic negotiation options for, 174 

http options for, 173 

urls in, 174 

Secure http headers, 173 

SECURE method, 172 

Secure Sockets Layer (ssl), 156–168. See also ssl 

entries 

operation of, 161–168 

in the protocol stack, 157–158 

versus Transport Layer Security, 168–169 

Secure Sockets Layer (ssl) protocol, 129, 133 

Security. See also Firewalls; Intrusion detection; 

Replay attacks; Secure Sockets Layer (ssl) 

adding to http, 129 

in Improved Digest Authentication, 142 

Web site, 241 

Security architectures, multi-layer, 254–255 

Security protocols, references for, 280–281 

Security services, 143, 161–162 

Security support (Network Element Control 

Protocol), 211 

Security systems, 169 

Segments, 7 
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Serial connections, 18 

Server authentication, 146–147, 163 

Server calculation, 148–149 

Server clocks, 89 

Server clusters, 253–254, 258–259 

Server digest calculation, for integrity protection, 156 

Server error, 82 

Server error status codes, 127–128 

Server header, 105. See also User-Agent header 

Server location, role in load balancing, 178–180 

Server response problems, 94–98 

Servers, 13–19. See also Cache servers; Proxy servers 

capabilities supported by, 24–25 

cookie creation by, 39 

cooperating, 26–37 

global load balancing and, 180 

intermediate, 26, 102, 112 

network path to, 25–26 

problems with, 89–90 

sending information to, 20–23 

“testing the waters with,” 117 

Service providers, depth of, 267. See also Internet 

Service Providers (isps) 

Services 

building, 241 

integrity protection, 152–156 

optional, 149 

Session id, 167 

Session-level failover support, 260 

Set-Cookie header, 79, 80, 106 

Set-Cookie2 header, 79, 80, 106 

set message, 221–222 

Signatures, 273 

Signing process, 161 

Simple Network Management Protocol (snmp), 269–

270 

Site failures, 180 

Site identifiers, 28 

s-maxage directive, 70 

ssl client authentication, 166 

ssl processing, specialized, 225–226 

ssl session negotiation, 164 

ssl sessions 

establishing, 163 

resuming previously established, 167–168 

stale parameter, 137 

Standby databases, 263–264 

State information, sharing, 257 

Stateless operation, 38 

State maintenance, 37–45 

cookies and, 38–39 

State management cookies, 38 

State management specification, 80 

Static Web sites, 254 

Status-Code, 53 

Status codes, 19–20, 22, 29, 115–128 

client error, 124–127 

informational, 117–119 

redirection, 122–124 

server error, 127–128 

successful, 119–122 

version 1.1, 238–239 

Status-Line, in http responses, 51–52 

Strong ETag values, 82, 90 

Structured Query Language (sql), 32 

Successful status codes, 119–122 

syn (synchronize) flag, 15 

System building, 241 

T 

Target servers, determining, 182–186 

tcp connections, 15. See also Transmission Control 

Protocol (tcp) 

tcp multiplexing, 227–228 
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tcp port numbers, 169 

tcp processors, 227–228 

TE header, 59, 106–107 

Telecommunications industry, 243 

Temporary cookies, 43 

Testing and Staging, 274 

text content type, 57 

text/* content type, 57 

Text line endings, conventions for indicating, 48 

300 Multiple Choices status code, 122 

301 Moved Permanently status code, 122–123 

302 Found status code, 93, 123, 186 

303 See Other status code, 123 

304 Not Modified status, 88, 90, 101 

304 Not Modified status code, 123 

305 Use Proxy status code, 123 

307 Temporary Redirect status code, 124 

“Three-way handshake,” 15 

3xx status codes, 116, 122–124 

timeout=n directive, 99, 100 

Timestamp, 136 

“Time to Live” value, 246 

tls handshake negotiation, 170 

TRACE message, 25–26 

TRACE method, 50, 94, 96 

TRACE request, 98, 112 

TRACE response, 113 

Tracking and Logging, 274 

Traffic interception, 181–182 

Traffic sessions, effect of requests on, 211 

Trailer fields, 107 

Trailer header, 107 

Transfer-Encoding, 73 

Transfer encoding format, 108 

Transfer-Encoding header, 107–109 

Transfer encodings, 106–107 

Transmission Control Protocol (tcp), 5, 7. See also 

tcp entries 

Transparent caches, 186, 187 

Transparent cache servers, 190–191 

Transparent caching, Web Cache Communication 

Protocol and, 200–203 

Transport Layer Security (tls), 110, 168–172 

control of protocol in, 169 

upgrading to, 169–172 

version number confusion in, 168 

Transport Layer Security (tls) protocol, 129, 133 

Transport Level Security (tls), 127 

Transport protocol, 5 

tst messages, 217, 218 

Tunnels, 33 

200 OK response, 152 

200 OK status, 89, 91, 93, 96, 101, 103 

200 OK status code, 119 

201 Created response, 93 

201 Created status, 119 

202 Accepted status, 120 

203 Non-Authoritative Information status 

code, 120 

204 No Content status, 120–121 

205 Reset Content status, 121–122 

206 Partial Content status, 122 

206 Partial Content status code, 103 

2xx status codes, 115–116, 119–122 

U 

udp echo port, 214 

Unicode character set, 58–59 

Uniform Resource Identifiers (uris), 9–10, 19, 22, 75. 

See also Resources 

components of, 10 

permanent changes in, 122–123 

Uniform Resource Locators (urls), 9 
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unix compress format, 59 

unix systems, 48 

UNLINK method, 232 

Upgrade: tls/1.0 header, 118–119 

Upgrade header, 70, 71, 110, 170, 171 

Upload button, 23 

uri parameter, 140 

url mangling, 256 

url parameter, 195 

Usage reports, 101 

User-Agent header, 54, 105, 110–111 

User-Agent value, 111 

username parameter, 140 

Usernames, 134 

User operations, in http protocol, 19–23 

User passwords, 130 

Users, improving web experience of, 177–228 

V 

Vary header, 111 

Version attribute, 42 

Via header, 31–32, 96, 98, 112–113 

Via option, 26 

Virtual hosts, 27–29 

W 

Warning header, 113–114 

wccp_assign_buckets message, 203 

wccp messages, 201, 202 

Weak ETag values, 82, 86, 90 

Web applications, 255–266, 276 

dynamics of, 256–257 

security of, 265 

Web authentication, 130–156 

Web browsers, 1, 2, 243–244 

client role in, 14 

proxy cache servers and, 188–189 

proxy servers and, 32 

Web browsing, 22 

Web Cache Communication Protocol (wccp), 191, 194, 

200–203. See also wccp messages 

version 2, 204 

versus Network Element Control Protocol, 204 

Web caches, 81 

Web environment, redirection and, 30 

Web experience, improving, 177–228 

Web forms, 20–22 

Web hosting, 27–29, 85–86 

Web maintenance/upgrade procedures, 273–274 

Web page retrieval, 19–20 

Web pages, 3, 16 

following links on, 103–104 

tailoring to specific users, 82 

Web performance, cache servers and, 33–34 

Web Proxy Auto-Discovery (wpad), 189, 197–200. See 

also wpad entries 

Web servers 

failed, 244–245, 246 

monitoring the health of, 184 

Web session information, protection levels for, 257 

Web sessions, tracking, 256 

Web site monitoring, external, 266–268 

Web sites 

applications and, 255–266 

availability of, 266–274 

building, 241–277 

bullet-proof, 241–242, 275 

caching control by, 191–192 

demand for, 27 

dynamic, 247 

international, 179–180 

Internet connections for, 242–249 

login process for, 133 
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system failures in, 250–251 

systems and infrastructure for, 250–255 

Web systems, 276 

Web traffic, 2 

Wildcards, 57 

will-report-and-limit directive, 99, 100 

wont-ask directive, 99, 101 

wont-limit directive, 100, 100 

wont-report directive, 100, 100 

World Wide Web, 1, 256. See also Web sites 

Hypertext Transfer Protocol (http) and, 2–3 

security on, 129 

virtual hosts and, 27–29 

World Wide Web Consortium, 234 

wpad protocol, 189, 190. See also Web Proxy Auto-

Discovery (wpad) 

WWW-Authenticate header, 102, 114–115, 124, 130–131, 

135 

WWW-Authenticate parameters, 137 

WWW-Authenticate response, 152 

X 

x00 status code, 115 

 





 

 

Electronic Edition License Agreement 
1. License. John Wiley & Sons, Inc. (“Wiley”) hereby grants you, and you accept, a non-exclusive and non-
transferable license, to use the accompanying cd-rom, referred to as the “Software”. 

2. Term. This License Agreement is effective until terminated. You may terminate it at any time by destroying 
the Software and all copies made (with or without authorization). 

3. Authorized Use of Software. You shall have the right to load the [Software] on a single computer and at 
single location designated by you. You may not use the Software on a network or multi-user basis. Upon termi-
nation of this License, you agree to destroy all copies in any form. If you transfer possession of any copy of 
the software to another party, your license is automatically terminated. 

4. Use Restrictions. You may not (a) copy the Software, except to load it into a computer in accordance with 
instructions set forth in the User’s Manual; (b) distribute copies of the Software to any other person; (c) modify, 
adapt, translate, reverse, engineer, decompile, disassemble, or create derivative works based on the Software (d) 
copy, download, store in a retrieval Software, publish, transmit, or otherwise reproduce, transfer, store, dissemi-
nate, or use, in any form or by any means, any part of the data contained within the Software except as expressly 
provided for in this License; (e) transfer, resell, sublicense, lease, or grant any other rights of any kind to any 
individual copy of the Software to any other persons; (f ) remove any proprietary notices, labels, or marks on the 
Software. You shall take reasonable measures to maintain the security of the Software. 

5. Proprietary Rights. You acknowledge and agree that the Software is the sole and exclusive property of Wiley, 
and the Software is licensed to you only for the term of this License and strictly under the terms hereof. Wiley 
owns all right, title, and interest in and to the content of the Software. Except for the limited rights given to you 
herein, all rights are reserved by Wiley. 

6. Warranties, Indemnities, and Limitation of Liability. The software is provided “as is,” without war-
ranty of any kind, express or implied, including but not limited to the implied warranties of 
merchantability or fitness for a particular purpose. Wiley neither gives nor makes any other 
warranties or representations under or pursuant to this license. Wiley does not warrant, guarantee 
or make any representations that the functions contained in the Software will meet your particular requirements 
or that the operation of the Software will be uninterrupted or error free. The entire risk as to the results and 
performance of the Software is assumed by you. If the Software disc is defective in workmanship or materials 
and Wiley is given timely notice thereof, Wiley’s sole and exclusive liability and your sole and exclusive remedy, 
shall be to replace the defective disc. In the event of a defect in a disc covered by this warranty, Wiley will re-
place the disc provided that you return the defective disc to Wiley together with a copy of your receipt. If Wiley 
is unable to provide a disc that is free from such defects, you may terminate this License by returning the disc 
and all associated documentation to Wiley for a full refund. The foregoing states your sole remedy and Wiley’s 
sole obligation in the event of the occurrence of a defect coming within the scope of the limited warranty. 

In no event shall wiley, its suppliers, or anyone else who has been involved in the creation, pro-
duction or delivery of the software or documentation be liable for any loss or inaccuracy of 
data of any kind or for lost profits, lost savings, or any direct, indirect, special, consequential or 
incidental damages arising out or related in any way to the use or inability to use the software 
or data, even if wiley or its suppliers have been advised of the possibility of such damages. This 
limitation of liability shall apply to any claim or cause whatsoever whether such claim or 
cause is in contract, tort or otherwise. 

The limited warranty set forth above is in lieu of all other express warranties, whether oral or written. 

(Some states do not allow exclusions or limitations of implied warranties or liability in certain cases, so the 
above exclusions and limitations may not apply to you.) 

7. General.  

(a) This License may not be assigned by the Licensee except upon the written consent of Wiley. 

(b) The License shall be governed by the laws of the State of New York. 

(c) The above warranties and indemnities shall survive the termination of this License. 

(d) If the Licensee is located in Canada, the parties agree that it is their wish that this License, as well as all 
other documents relating hereto, including notices, have been and shall be drawn up in the English language 
only. 
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